Embedded AMD-K6™ Processors
BIOS Design Guide

Application Note
The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Trademarks

AMD, the AMD logo, and combinations thereof, AMD-K6, 3DNow!, E86, AMD PowerNow!, and Super7 are trademarks, and FusionE86 is a service mark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Contents

Revision History .. xi
Introduction ... 1
 Audience ... 1
Processor Models and Steppings 2
 AMD-K6™E Embedded Processor 3
 AMD-K6™-2 Processor ... 3
 AMD-K6™-2E Embedded Processor 4
 AMD-K6™-2E+ Embedded Processor 4
 AMD-K6™-III Processor ... 5
 AMD-K6™-IIIE+ Embedded Processor 5
BIOS Consideration Checklist 6
 CPUID ... 6
 CPU Speed Detection ... 6
 Model-Specific Registers (MSRs) 6
 Cache Testing ... 7
 SMM Issues .. 7
States after RESET and INIT 8
 Register States after RESET and INIT 8
 Processor State after INIT 9
 Built-In Self-Test (BIST) 10
CPUID Identification Algorithms 11
System Management Mode (SMM) 13
 State-Save Map Differences 13
 I/O Trap Dword Differences 13
Model-Specific Registers Overview 14
 Standard Model-Specific Registers (All Models) 16
Model 7 and Model 8/[7:0] Registers 17
 Extended Feature Enable Register (EFER) 18
 Write Handling Control Register (WHCR) 19
 SYSCALL/SYSRET Target Address Register (STAR) 22
Preliminary Information

Embedded AMD-K6™ Processors BIOS Design Guide

Contents

Model 8/[F:8] Registers ... 23
 Extended Feature Enable Register (EFER) 24
 Write Handling Control Register (WHCR) 27
 UC/UC Cacheability Control Register (UWCCR) 30
 Processor State Observability Register (PSOR) 34
 Page Flush/Invalidate Register (PFIR) 36

Model 9 Registers ... 38
 Extended Feature Enable Register (EFER) 39
 Level-2 Cache Array Access Register (L2AAR) 40

Model D Registers .. 45
 Processor State Observability Register (PSOR)
 (Low-Power Versions) .. 46
 Level-2 Cache Array Access Register (L2AAR) 48
 Enhanced Power Management Register (EPMR)
 (Low-Power Versions) .. 54
 EPM 16-Byte I/O Block (Low-Power Versions Only) 55

Embedded AMD Processor Recognition 57
 CPUID Instruction Overview .. 57
 Testing for the CPUID Instruction 58
 Using CPUID Functions .. 59
 Identifying the Processor’s Vendor 60
 Testing For Extended Functions ... 61
 Determining the Processor Signature 61
 Identifying Supported Features .. 63
 Determining Instruction Set Support 64
 Detection Algorithm for Determining Instruction Set Support 65
 AMD Processor Signature (Extended Function) 66
 Displaying the Processor’s Name .. 66
 Displaying Cache Information ... 67
 Determining AMD PowerNow™ Technology Information 67
 Sample Code ... 67

New AMD-K6™ Processor Instructions 68

Additional Considerations ... 69
Software Timing Dependencies Relative to Memory
Controller Setup .. 69
Pipelining Support .. 69
Read-Only Memory ... 70
Appendix A .. 71
CPUID .. 71
Standard Functions ... 72
Extended Functions ... 75
Cache Associativity Field Definitions 80
Appendix B .. 81
Values Returned by the CPUID Instruction 81
Index ... 83
List of Figures

Figure 1. CPUID Instruction Flow Chart ... 12
Figure 2. Extended Feature Enable Register (EFER)
 (Models 7 and 8/[7:0]) .. 18
Figure 3. Write Handling Control Register (WHCR)
 (Models 7 and 8/[7:0]) .. 20
Figure 4. SYSCALL/SYSRET Target Address Register (STAR)
 (Models 8, 9, and D) .. 22
Figure 5. Extended Feature Enable Register (EFER)
 (Model 8/[F:8]) ... 24
Figure 6. Write Handling Control Register (WHCR)
 (Models 8/[F:8], 9, and D) ... 28
Figure 7. UC/WC Cacheability Control Register (UWCCR)
 (Models 8/[F:8], 9, and D) ... 31
Figure 8. Processor State Observability Register (PSOR)
 (Models 8/[F:8], 9, and Standard-Power D) 34
Figure 9. Page Flush/Invalidate Register (PFIR)
 (Models 8/[F:8], 9, and D) ... 36
Figure 10. Extended Feature Enable Register (EFER)
 (Models 9 and D) .. 39
Figure 11. L2 Cache Organization (AMD-K6™-III Processor) 40
Figure 12. L2 Cache Sector and Line Organization 41
Figure 13. L2 Tag or Data Location (AMD-K6™-III
 Processor)—EDX .. 41
Figure 14. L2 Data—EAX ... 42
Figure 15. L2 Tag Information (AMD-K6™-III Processor)—EAX ... 43
Figure 16. LRU Byte ... 43
Figure 17. Processor State Observability Register (PSOR)
 (Model D Low-Power Versions) 46
Figure 18. L2 Cache Organization ... 48
Figure 19. L2 Cache Sector and Line Organization
 (same as Figure 12) .. 49
Figure 20. L2 Tag or Data Location (AMD-K6™-2E+ Processor)—EDX ... 50
Figure 21. L2 Tag or Data Location (AMD-K6™-IIIIE+ Processor)—EDX ... 50
Figure 22. L2 Data—EAX (same as Figure 14) 51
Figure 23. L2 Tag Information (AMD-K6™-2E+ Processor)—EAX ... 52
Figure 24. L2 Tag Information (AMD-K6™-IIIIE+ Processor)—EAX ... 52
Figure 25. LRU Byte (same as Figure 16) 53
Figure 26. Enhanced Power Management Register (EPMR) (Low-Power Model D) 54
Figure 27. EPM 16-Byte I/O Block (Low-Power Model D) 55
Figure 28. Bus Divisor and Voltage ID Control (BVC) Field (Low-Power Model D) 56
Figure 29. Contents of EAX Register Returned by Function 1 . 62
Figure 30. Contents of EAX Register Returned by Extended Function 8000_0001h 66
List of Tables

Table 1. Features of the AMD-K6™ Processor Family 2
Table 2. AMD-K6™E Processor (Model 7) and AMD-K6™ Processor
(Models 8/[7:0]) State after RESET 8
Table 3. AMD-K6™ Processor (Models 8/[F:8]) and AMD-K6™-2E
Processor (Model 8/[F:8]) State after RESET 8
Table 4. AMD-K6™-2E+ (Model D), AMD-K6™-III (Model 9), and
AMD-K6™-IIIE+ Processors (Model D)
State after RESET ... 9
Table 5. Recommended Boot Strings for AMD-K6™ Processors . 11
Table 6. AMD-K6™ Processor I/O Trap Dword Configuration
at Offset FFA4h ... 13
Table 7. Summary by Register of MSR Differences within the
AMD-K6™ Family .. 14
Table 8. Summary by Model of MSR Differences within the
AMD-K6™ Family .. 15
Table 9. Model-Specific Registers Supported by Models 7 and
8/[7:0] ... 17
Table 10. Extended Feature Enable Register (EFER) Definition
(Models 7 and 8/[7:0]) ... 18
Table 11. SYSCALL/SYSRET Target Address Register (STAR)
Definition (Models 8, 9, and D) 22
Table 12. Model-Specific Registers Supported by Model 8/[F:8] . 23
Table 13. Extended Feature Enable Register (EFER)
Definition (Model 8/[F:8]) .. 24
Table 14. Write Ordering and Performance Settings for EFER
Register ... 26
Table 15. WC/UC Memory Type for UWCCR Register 31
Table 16. Valid Masks and Range Sizes for UWCCR Register... 32
Table 17. Processor-to-Bus Clock Ratios (Models 8/[F:8] and 9) . 35
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 18</td>
<td>Processor-to-Bus Clock Ratios (Model Standard-Power D)</td>
<td>35</td>
</tr>
<tr>
<td>Table 19</td>
<td>Model-Specific Registers Supported by Model 9</td>
<td>38</td>
</tr>
<tr>
<td>Table 20</td>
<td>Extended Feature Enable Register (EFER) Definition (Models 9 and D)</td>
<td>39</td>
</tr>
<tr>
<td>Table 21</td>
<td>Tag versus Data Selector</td>
<td>42</td>
</tr>
<tr>
<td>Table 22</td>
<td>Model-Specific Registers Supported by Model D</td>
<td>45</td>
</tr>
<tr>
<td>Table 23</td>
<td>Processor-to-Bus Clock Ratios (Low-Power Model D)</td>
<td>47</td>
</tr>
<tr>
<td>Table 24</td>
<td>Tag versus Data Selector (same as Table 21)</td>
<td>51</td>
</tr>
<tr>
<td>Table 25</td>
<td>Enhanced Power Management Register (EPMR) Definition (Low-Power Model D)</td>
<td>54</td>
</tr>
<tr>
<td>Table 26</td>
<td>EPM 16-Byte I/O Block Definition (Low-Power Model D)</td>
<td>55</td>
</tr>
<tr>
<td>Table 27</td>
<td>Bus Divisor and Voltage ID Control (BVC) Definition (Low-Power Model D)</td>
<td>56</td>
</tr>
<tr>
<td>Table 28</td>
<td>CPUID Functions in AMD-K6™ Processors</td>
<td>60</td>
</tr>
<tr>
<td>Table 29</td>
<td>Processor Signatures for AMD-K6™ Processors</td>
<td>62</td>
</tr>
<tr>
<td>Table 30</td>
<td>Standard and Extended Feature Bits</td>
<td>63</td>
</tr>
<tr>
<td>Table 31</td>
<td>Standard Feature Flag Descriptions</td>
<td>74</td>
</tr>
<tr>
<td>Table 32</td>
<td>Extended Feature Flag Descriptions</td>
<td>76</td>
</tr>
<tr>
<td>Table 33</td>
<td>EBX Format Returned by Function 8000_0005h</td>
<td>78</td>
</tr>
<tr>
<td>Table 34</td>
<td>ECX Format Returned by Function 8000_0005h</td>
<td>78</td>
</tr>
<tr>
<td>Table 35</td>
<td>EDX Format Returned by Function 8000_0005h</td>
<td>78</td>
</tr>
<tr>
<td>Table 36</td>
<td>ECX Format Returned by Function 8000_0006h</td>
<td>79</td>
</tr>
<tr>
<td>Table 37</td>
<td>EDX Format Returned by Function 8000_0007h</td>
<td>79</td>
</tr>
<tr>
<td>Table 38</td>
<td>Associativity Values for L2 Cache</td>
<td>80</td>
</tr>
<tr>
<td>Table 39</td>
<td>CPUID Values Returned by AMD-K6™ Processors</td>
<td>81</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Rev</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2000</td>
<td>A</td>
<td>Initial public release.</td>
</tr>
</tbody>
</table>
Introduction

This document highlights the BIOS modifications required to fully support the AMD-K6™ processors used by AMD’s embedded customers. The information in this application note pertains to the following processors in the AMD-K6 family:

- AMD-K6E embedded processor
- AMD-K6-2 processor
- AMD-K6-2E embedded processor
- AMD-K6-2E+ embedded processor
- AMD-K6-III processor
- AMD-K6-IIIIE+ embedded processor

There can be more than one way to implement the functionality detailed in this document, and the information provided is for demonstration purposes.

All referenced AMD-K6 processor documents can be found on the AMD website at http://www.amd.com/.

Audience

It is assumed that the reader has a solid understanding of the x86 processors, the x86 architecture, and programming requirements.
Processor Models and Steppings

Four models within the AMD-K6 family of processors—models 7, 8, 9, and D—are discussed in this document.

For most models, feature and function detection can be determined by reading the standard and extended feature bits by executing the CPUID instruction. However, for certain models, it is necessary to check the stepping—by executing the CPUID instruction—to determine specific function support.

Table 1 shows the features of each model and stepping of the AMD-K6 processor family.

Table 1. Features of the AMD-K6™ Processor Family

<table>
<thead>
<tr>
<th>Processor</th>
<th>Model/ Stepping</th>
<th>Process (in microns)</th>
<th>Number of MSRs¹</th>
<th>3DNow!™ Instructions</th>
<th>3DNow! Extensions</th>
<th>AMD PowerNow!™ Technology</th>
<th>L2 Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD-K6E</td>
<td>7</td>
<td>0.25</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD-K6-2</td>
<td>8/[7:0]</td>
<td>0.25</td>
<td>7</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD-K6-2 and AMD-K6-2E</td>
<td>8/[F:8]</td>
<td>0.25</td>
<td>10²</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD-K6-2E+</td>
<td>D/[7:4]</td>
<td>0.18</td>
<td>11³,4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes¹¹¹</td>
<td>128 Kbytes</td>
</tr>
<tr>
<td>AMD-K6-III</td>
<td>9/[3:0]</td>
<td>0.25</td>
<td>11³</td>
<td>Yes</td>
<td></td>
<td></td>
<td>256 Kbytes</td>
</tr>
<tr>
<td>AMD-K6-IIIIE+</td>
<td>D/[3:0]</td>
<td>0.18</td>
<td>11³,4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes¹¹¹</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Refer to "Model-Specific Registers Overview" on page 14 for more information.
2. Model 8/[F:8] defines the bits and fields in the Write Handling Control Register (WHCR) and Extended Feature Enable Register (EFER) differently from the models 7 and 8/[7:0].
3. This model implements the same ten MSRs as the Model 8/[F:8]. With the exception of bit 4 (L2D) in the EFER register, the bits and fields within these ten MSRs are defined identically.
4. Low-power versions implement one additional register to support AMD PowerNow!™ technology.
5. AMD PowerNow! technology is supported on low-power versions of these processors only.

The descriptions in the remainder of this section provide more detailed information on the AMD-K6 processor family members, and the models and steppings that comprise each member.

Table 7 on page 14 and Table 8 on page 15 summarize the MSR differences between the models and steppings of the AMD-K6 family of processors.
AMD-K6™E Embedded Processor

Model 7
Model 7 is the first processor manufactured in the 0.25-micron process.
- Model 7 supports six model-specific registers (MSRs).

AMD-K6™-2 Processor

Some important features supported by the AMD-K6-2 processor include the 3DNow!™ instruction set and a 100-MHz processor bus.

Model 8/[7:0]
Model 8/[7:0] is any of eight possible model/steppings—models 8/0, 8/1, 8/2, 8/3, 8/4, 8/5, 8/6, or 8/7. Model 8/[7:0] is manufactured in the 0.25-micron process and was the original version of the AMD-K6-2 available as a desktop product.
- Model 8/[7:0] implements the same six MSRs as the Model 7, and the bits and fields within these six MSRs are defined identically.
- Model 8/[7:0] also implements the SYSCALL/SYSRET Target Address Register (STAR) MSR for a total of seven MSRs.

Model 8/[F:8]
Model 8/[F:8] is any of eight possible model/steppings—models 8/8, 8/9, 8/A, 8/B, 8/C, 8/D, 8/E, or 8/F. Model 8/[F:8] is manufactured in the 0.25-micron process.
- Model 8/[F:8] implements the same six MSRs as the models 7 and 8/[7:0], but the bits and fields within two of these MSRs—WHCR and EFER—are not defined identically.
- Also, Model 8/[F:8] supports the STAR MSR and three additional MSRs, for a total of ten MSRs.
AMD-K6™-2E Embedded Processor

The AMD-K6-2E processor also supports the 3DNow! instruction set and a 100-MHz processor bus.

Model 8/[F:8]

Model 8/[F:8] is any of eight possible model/steppings—models 8/8, 8/9, 8/A, 8/B, 8/C, 8/D, 8/E, or 8/F. Model 8/[F:8] is manufactured in the 0.25-micron process.

- Model 8/[F:8] implements the same six MSRs as the models 7 and 8/[7:0], but the bits and fields within two of these MSRs—WHCR and EFER—are not defined identically.
- Also, Model 8/[F:8] supports the STAR MSR and three additional MSRs, for a total of ten MSRs.

AMD-K6™-2E+ Embedded Processor

In addition to supporting the 3DNow! instruction set and a 100-MHz processor bus, the AMD-K6-2E+ processor contains a 128-Kbyte backside L2 cache. It also supports the 3DNow! DSP instructions extensions. Low-power versions of the processor support AMD PowerNow!™ technology.

Model D/[7:4]

Model D/[7:4] is any of four possible model/steppings—models D/4, D/5, D/6, or D/7. Model D/[7:4] is manufactured in the 0.18-micron process.

- Model D/[7:4] implements the same ten MSRs as the Model 8/[F:8]. With the exception of bit 4 (L2D) in the EFER register, the bits and fields within these ten MSRs are defined identically for standard-power versions. The PSOR register is defined differently for low-power versions.
- Model D/[7:4] supports an additional MSR, the Level-2 Cache Array Access Register (L2AAR), for a total of eleven MSRs.
- Low-power versions of Model D/[7:4] support an additional MSR, the Enhanced Power Management Register (EPMR), for a total of twelve MSRs.
AMD-K6™-III Processor

In addition to supporting the 3DNow! instruction set and a 100-MHz processor bus, the AMD-K6-III processor contains a 256-Kbyte backside L2 cache.

Model 9/[3:0]

Model 9/[3:0] is any of four possible model/steppings—models 9/0, 9/1, 9/2, or 9/3. Model 9/[3:0] is manufactured in the 0.25-micron process.

- Model 9/[3:0] implements the same ten MSRs as the Model 8/[F:8]. With the exception of bit 4 (L2D) in the EFER register, the bits and fields within these ten MSRs are defined identically.
- Model 9/[3:0] supports one additional MSR for a total of eleven MSRs.

AMD-K6™-IIIIE+ Embedded Processor

In addition to supporting the 3DNow! instruction set and a 100-MHz processor bus, the AMD-K6-IIIIE+ processor contains a 256-Kbyte backside L2 cache. It also supports the 3DNow! DSP instruction extensions. Low-power versions of the processor support AMD PowerNow! technology.

Model D/[3:0]

Model D/[3:0] is any of four possible model/steppings—models D/0, D/1, D/2, or D/3. Model D/[3:0] is manufactured in the 0.18-micron process.

- Model D/[3:0] implements the same ten MSRs as the Model 8/[F:8]. With the exception of bit 4 (L2D) in the EFER register, the bits and fields within these ten MSRs are defined identically for standard-power versions. The PSOR register is defined differently for low-power versions.
- Model D/[7:4] supports an additional MSR, the Level-2 Cache Array Access Register (L2AAR), for a total of eleven MSRs.
- Low-power versions of Model D/[7:4] support an additional MSR, the Enhanced Power Management Register (EPMR), for a total of twelve MSRs.
BIOS Consideration Checklist

CPUID

- Use the CPUID instruction to properly identify the processor. For information on the CPUID instruction, see “CPUID Instruction Overview” on page 57.
- Determine the processor model, stepping, and features using functions 0000_0001h and 8000_0001h of the CPUID instruction.
- Display the processor name (BIOS boot strings) as described in “CPUID Identification Algorithms” on page 11.

CPU Speed Detection

- Use speed detection algorithms that do not rely on repetitive instruction sequences.
- Use the Time Stamp Counter (TSC) to ‘clock’ a timed operation and compare the result to the real-time clock (RTC) to determine the operating frequency. See the CPU Speed Determination Program available on the AMD website at http://www.amd.com/products/cpg/bin/.
- Display the recommended BIOS boot string as shown in Table 5 on page 11.

Model-Specific Registers (MSRs)

- Only access MSRs implemented in the processor.
- Enable write allocation by programming the Write Handling Control Register (WHCR). See “Write Handling Control Register (WHCR)” on page 19 and page 27, and the Implementation of Write Allocate in the K86™ Processors Application Note, order# 21326 for more information.

Note: The WHCR register as defined in models 7 and 8/[7:0] is implemented differently in models 8/[F:8], 9, and D.

- For the AMD-K6-2E, AMD-K6-2E+, AMD-K6-III, and AMD-K6-IIIIE+ processors, utilize the information provided in the Processor State Observability Register (PSOR) to display the correct processor bus frequency.
Cache Testing

- The AMD-K6 family of processors does not contain MSRs to allow for testing of the L1 cache. However, the AMD-K6-2E+, AMD-K6-III, and AMD-K6-IIIE+ processors do contain an MSR that allows for testing of their L2 caches. This MSR is called L2AAR, and it is described in “Level-2 Cache Array Access Register (L2AAR)” on page 40.

SMM Issues

- The System Management Mode (SMM) functionality of the processor is the same as the Pentium® processor.

- Implement the processor SMM state-save area in a similar manner as Pentium processors except for the IDT Base and possibly Pentium processor-reserved areas. See “System Management Mode (SMM)” on page 13 for more information.
States after RESET and INIT

Register States after RESET and INIT

After the processor has completed its initialization following the recognition of an asserted RESET or INIT signal, the states of all architecture registers and MSRs are compatible with those of Pentium processors. Differences are listed in Table 2 through Table 4.

Table 2. AMD-K6™E Processor (Model 7) and AMD-K6™ Processor (Model 8/[7:0]) State after RESET

<table>
<thead>
<tr>
<th>Register</th>
<th>RESET State</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDX</td>
<td>0000_05MSh<sup>1</sup></td>
</tr>
<tr>
<td>EFER</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>STAR<sup>2</sup></td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>WHCR</td>
<td>0000_0000_0000_0000h</td>
</tr>
</tbody>
</table>

Notes:
1. “M” represents the Model and “S” represents the Stepping.
2. Processor Model 7 does not support the STAR register.

Table 3. AMD-K6™ Processor (Model 8/[F:8]) and AMD-K6™-2E Processor (Model 8/[F:8]) State after RESET

<table>
<thead>
<tr>
<th>Register</th>
<th>RESET State</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDX</td>
<td>0000_05MSh<sup>1</sup></td>
</tr>
<tr>
<td>EFER</td>
<td>0000_0000_0000_0002h</td>
</tr>
<tr>
<td>PFIR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>PSOR</td>
<td>0000_0000_0000_01SBh<sup>1,2</sup></td>
</tr>
<tr>
<td>STAR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>UWCCR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>WHCR</td>
<td>0000_0000_0000_0000h</td>
</tr>
</tbody>
</table>

Notes:
1. “M” represents the Model and “S” represents the Stepping.
Processor State after INIT

The assertion of INIT causes the processor to empty its pipelines, initialize most of its internal state, and branch to address FFF_FFF0h—the same instruction execution starting point used after RESET. Unlike RESET, the processor preserves the contents of its caches, the floating-point state, the SMM base, MSRs, and the CD and NW bits of the CR0 register.

The edge-sensitive interrupts FLUSH# and SMI# are sampled and preserved during the INIT process and are handled accordingly after the initialization is complete. However, the processor resets any pending NMI interrupt upon sampling INIT asserted.

INIT can be used as an accelerator for 80286 code that requires a reset to exit from protected mode back to real mode.

Table 4. AMD-K6™-2E+ (Model D), AMD-K6™-III (Model 9), and AMD-K6™-III+ Processors (Model D) State after RESET

<table>
<thead>
<tr>
<th>Register</th>
<th>RESET State</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDX</td>
<td>0000_05MSh¹</td>
</tr>
<tr>
<td>EFER²</td>
<td>0000_0000_0000_0002h</td>
</tr>
<tr>
<td>L2AAR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>PFIR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>PSOR</td>
<td>0000_0000_0000_005Bh¹,³</td>
</tr>
<tr>
<td>STAR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>UWCCR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>WHCR</td>
<td>0000_0000_0000_0000h</td>
</tr>
<tr>
<td>EPMR⁴</td>
<td>0000_0000_0000_0000h</td>
</tr>
</tbody>
</table>

Notes:
1. "M" represents the Model and "S" represents the Stepping.
2. Because EFER[4] equals 0 after RESET, the L2 cache is enabled by default after RESET.
4. Supported on low-power versions only of Model D processors.
Built-In Self-Test (BIST)

For all models of the AMD-K6 processor, BIST is run unconditionally following the falling transition of RESET. The results of the test are contained in the general-purpose register EAX. If EAX contains 0000_0000h, then BIST was successful. If the contents of EAX are non-zero, the BIST failed. The internal resources tested during BIST include the following:

- L1 instruction and data caches
- L2 unified cache (models 9 and D only)
- Instruction and data translation lookaside buffers (TLBs)
CPUID Identification Algorithms

The CPUID instruction provides information about the processor (vendor, type, name, etc.) and its capabilities (features). After detecting the processor and its capabilities, software can be accurately tuned to the system for maximum performance and benefit to users. For more detailed information about using the CPUID instruction, see “Embedded AMD Processor Recognition” on page 57.

To determine if the processor is enabled with AMD PowerNow! technology, use CPUID function 8000_0007, as described on page 79.

The recommended boot strings (or processor names) to be displayed for AMD-K6 processors are shown in Table 5.

Table 5. Recommended Boot Strings for AMD-K6™ Processors

<table>
<thead>
<tr>
<th>Model</th>
<th>Recommended Boot String Display¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 7</td>
<td>AMD-K6(tm)/XXX</td>
</tr>
<tr>
<td>All stepping Models 8</td>
<td>AMD-K6(tm)-2/XXX</td>
</tr>
<tr>
<td>Model D/[7:4]²</td>
<td>AMD-K6(tm)-2+/XXX</td>
</tr>
<tr>
<td>Model 9/[3:0]</td>
<td>AMD-K6(tm)-III/XXX</td>
</tr>
<tr>
<td>Model D/[3:0]²</td>
<td>AMD-K6(tm)-III+/XXX</td>
</tr>
</tbody>
</table>

Notes:

1. The value for XXX is determined by calculating the core frequency of the processor. Use the Time Stamp Counter (TSC) to ‘clock’ a timed operation and compare the result to the real-time clock (RTC) to determine the operating frequency.

2. See “Functions 8000_0002h, 8000_0003h, and 8000_0004h — Processor Name String” on page 77 for more information about these stepping.

For example, a BIOS boot string for a Model 9, stepping 3, 450-MHz AMD-K6-III processor would look like this:

- AMD-K6(tm)-III/450

Figure 1 on page 12 shows a flow chart for the CPUID instruction. Use this chart to implement a CPUID algorithm.
Figure 1. CPUID Instruction Flow Chart

* Streaming SIMD Extensions
System Management Mode (SMM)

This section documents the System Management Mode (SMM) differences between specified models of the AMD-K6 processor and the Pentium processor. For more information on SMM implementation in the K86 processors, see the appropriate AMD-K6 or AMD-K6E processor data sheet.

State-Save Map Differences

The SMM implemented in the AMD-K6 processor differs from the SMM implemented in the Pentium® processor in one way. The Interrupt Descriptor Table (IDT) base location in the AMD-K6 processors is located at offset FF90h. The Pentium processor has the IDT base located at offset FF94h.

I/O Trap Dword Differences

The I/O trap dword is located at offset FFA4h. Its AMD-K6 processor bit fields are shown in Table 6. This state-save area, which is reserved in Pentium processors, contains information regarding an I/O instruction that may have been trapped by an SMI# assertion.

Table 6. AMD-K6™ Processor I/O Trap Dword Configuration at Offset FFA4h

<table>
<thead>
<tr>
<th>Bits 31–16</th>
<th>Bits 15–4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Port Address</td>
<td>Reserved</td>
<td>Rep String Operation</td>
<td>I/O String Operation</td>
<td>Valid I/O Instruction</td>
<td>Input or Output</td>
</tr>
</tbody>
</table>
Model-Specific Registers Overview

Each of the models of the AMD-K6 processor family support a different set of model-specific registers (MSRs). These differences are summarized by register in Table 7. The differences are summarized by model in Table 8 on page 15, where an ‘X’ indicates support for a register or field.

The content of ECX selects the MSR to be addressed by the RDMSR and WRMSR instruction.

Table 7. Summary by Register of MSR Differences within the AMD-K6™ Family

<table>
<thead>
<tr>
<th>Register</th>
<th>Mnemonic</th>
<th>ECX Value</th>
<th>Models</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-Check Address Register</td>
<td>MCAR</td>
<td>00h</td>
<td>All</td>
<td>page 16</td>
</tr>
<tr>
<td>Machine-Check Type Register</td>
<td>MCTR</td>
<td>01h</td>
<td>All</td>
<td>page 16</td>
</tr>
<tr>
<td>Test Register 12</td>
<td>TR12</td>
<td>0Eh</td>
<td>All</td>
<td>page 16</td>
</tr>
<tr>
<td>Time Stamp Counter</td>
<td>TSC</td>
<td>10h</td>
<td>All</td>
<td>page 16</td>
</tr>
<tr>
<td>Extended Feature Enable Register</td>
<td>EFER</td>
<td>C000_0080h</td>
<td>7, 8/[7:0]</td>
<td>page 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/[F:8]</td>
<td>page 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9, D</td>
<td>page 39</td>
</tr>
<tr>
<td>Write Handling Control Register</td>
<td>WHCR</td>
<td>C000_0082h</td>
<td>7, 8/[7:0]</td>
<td>page 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/[F:8], 9, D</td>
<td>page 27</td>
</tr>
<tr>
<td>SYSCALL/SYSRET Target Address Register</td>
<td>STAR</td>
<td>C000_0081h</td>
<td>7</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8, 9, D</td>
<td>page 22</td>
</tr>
<tr>
<td>UC/WC Cacheability Control Register</td>
<td>UWCCR</td>
<td>C000_0085h</td>
<td>7, 8/[7:0]</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/[F:8], 9, D</td>
<td>page 30</td>
</tr>
<tr>
<td>Processor State Observability Register</td>
<td>PSOR</td>
<td>C000_0087h</td>
<td>7, 8/[7:0]</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/[F:8], 9, D</td>
<td>page 34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D²</td>
<td>page 46</td>
</tr>
<tr>
<td>Page Flush/Invalidate Register</td>
<td>PFIR</td>
<td>C000_0088h</td>
<td>7, 8/[7:0]</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/[F:8], 9, D</td>
<td>page 36</td>
</tr>
</tbody>
</table>
Table 7. Summary by Register of MSR Differences within the AMD-K6™ Family (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Mnemonic</th>
<th>ECX Value</th>
<th>Models</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-2 Cache Array Access Register</td>
<td>L2AAR</td>
<td>C000_0089h</td>
<td>7, 8</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>page 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>page 48</td>
</tr>
<tr>
<td>Enhanced Power Management Register</td>
<td>EPMR</td>
<td>C000_0086h</td>
<td>7, 8, 9, D¹</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D²</td>
<td>page 54</td>
</tr>
</tbody>
</table>

Notes:
1. Standard-power versions only.
2. Low-power versions only.

Table 8. Summary by Model of MSR Differences within the AMD-K6™ Family

<table>
<thead>
<tr>
<th>Model</th>
<th>Stepping</th>
<th>Standard MSRs¹</th>
<th>L2D</th>
<th>EWBEc</th>
<th>DPE</th>
<th>SCE</th>
<th>WHCR³</th>
<th>PSOR</th>
<th>L2AAR</th>
<th>EPMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>All</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7:0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>F:8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3:0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3:0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>x⁴</td>
<td>x⁵</td>
<td>X</td>
<td>x⁵</td>
</tr>
<tr>
<td></td>
<td>7:4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>x⁴</td>
<td>x⁵</td>
<td>X</td>
<td>x⁵</td>
</tr>
</tbody>
</table>

Notes:
1. There are four MSRs that every model and stepping of the AMD-K6 family of processors support identically—MCAR, MCTR, TR12, and TSC.
2. L2D, EWBEc, and DPE are bits/fields supported in EFER for the indicated models/steppings. All models/steppings support the System Call Extension (SCE) bit in EFER, even if the corresponding SYSCALL and SYSRET instructions and the STAR register are not supported.
3. Indicates whether the WAELIM field supports 508 Mbytes or 4092 Mbytes of memory. The location of the WAE15M bit and the WAELIM field within the WHCR register differs between the models/steppings that support 508 Mbytes of memory and those that support 4092 Mbytes of memory.
4. Supported on standard-power versions only.
5. Supported on low-power versions only.
Standard Model-Specific Registers (All Models)

This section describes the four standard MSRs that every model and stepping of the AMD-K6 family of processors support identically. See the appropriate AMD-K6 or AMD-K6E processor data sheet for more detail on these standard registers.

Machine-Check Address Register (MCAR) and Machine-Check Type Register (MCTR)

The processor does not support the generation of a machine check exception, but does provide a 64-bit Machine Check Address Register (MCAR) and a 64-bit Machine Check Type Register (MCTR) for software compatibility. Because the processor does not support machine check exceptions, the contents of the MCAR and MCTR are only affected by the WRMSR instruction and by RESET being sampled asserted (where all bits in each register are reset to 0).

The processor also provides the Machine Check Exception (MCE) bit in Control Register 4 (CR4, bit 6) as a read-write bit. However, the state of this bit has no effect on the operation of the processor.

Test Register 12 (TR12)

The processor provides the 64-bit Test Register 12 (TR12), but only the Cache Inhibit (CI) bit (bit 3 of TR12) is supported. All other bits in TR12 have no effect on the processor’s operation.

Note: The I/O Trap Restart function (bit 9 of TR12) is always enabled on AMD-K6 processors.

Time Stamp Counter (TSC)

With each processor clock cycle, the processor increments a 64-bit time stamp counter (TSC) MSR. The counter can be written or read using the WRMSR or RDMSR instructions when the ECX register contains the value 10h and current privilege level (CPL) = 0. The counter can also be read using the RDTSC instruction, but the required privilege level for this instruction is determined by the Time Stamp Disable (TSD) bit in CR4. With either of these instructions, the EDX and EAX registers hold the upper and lower dwords of the 64-bit value to be written to or read from the TSC, as follows:

- EDX—Upper 32 bits of TSC
- EAX—Lower 32 bits of TSC

The TSC can be loaded with any arbitrary value. This feature is compatible with the Pentium processor.
Model 7 and Model 8/[7:0] Registers

The AMD-K6E processor Model 7 and the AMD-K6-2 processor Model 8/[7:0] provide the model-specific registers listed in Table 9.

The contents of ECX selects the MSR to be addressed by the RDMSR and WRMSR instruction.

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Mnemonic</th>
<th>ECX Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-Check Address Register</td>
<td>MCAR</td>
<td>00h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Machine-Check Type Register</td>
<td>MCTR</td>
<td>01h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Test Register 12</td>
<td>TR12</td>
<td>0Eh</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Time Stamp Counter</td>
<td>TSC</td>
<td>10h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Extended Feature Enable Register</td>
<td>EFER</td>
<td>C000_0080h</td>
<td>page 18</td>
<td></td>
</tr>
<tr>
<td>Write Handling Control Register</td>
<td>WHCR</td>
<td>C000_0082h</td>
<td>page 19</td>
<td></td>
</tr>
<tr>
<td>SYSCALL/SYSRET Target Address Register</td>
<td>STAR</td>
<td>C000_0081h</td>
<td>page 22</td>
<td>Not supported on Model 7</td>
</tr>
</tbody>
</table>
Extended Feature Enable Register (EFER)

The Extended Feature Enable Register (EFER) contains the control bits that enable the extended features of the AMD-K6 processor. Figure 2 shows the format of the EFER register, and Table 10 defines the function of each bit of the EFER register. The EFER register is MSR C000_0080h.

Figure 2. Extended Feature Enable Register (EFER) (Models 7 and 8/[7:0])

Table 10. Extended Feature Enable Register (EFER) Definition (Models 7 and 8/[7:0])

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>R/W</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>63–1</td>
<td>Reserved</td>
<td>R</td>
<td>Writing a 1 to any reserved bit causes a general protection fault to occur. All reserved bits are always read as 0.</td>
</tr>
<tr>
<td>0</td>
<td>System Call Extension (SCE)¹</td>
<td>R/W</td>
<td>SCE must be set to 1 to enable the usage of the SYSCALL and SYSRET instructions.</td>
</tr>
</tbody>
</table>

Notes:
1. The AMD-K6E processor Model 7 provides the SCE bit in the EFER register, but this bit does not affect processor operation because the SYSCALL and SYSRET instructions and the STAR register are not supported in this models.
Write Handling Control Register (WHCR)

The Write Handling Control Register (WHCR) (see Figure 3 on page 20) is an MSR that contains three fields—the Write Cacheability Detection Enable (WCDE) bit, the Write Allocate Enable Limit (WAELIM) field, and the Write Allocate Enable 15-to-16-Mbyte (WAE15M) bit. The WHCR register is MSR C000_0082h.

AMD-K6 processors contain a split level-1 (L1) 64-Kbyte writeback cache organized as a separate 32-Kbyte instruction cache and a 32-Kbyte data cache with two-way set associativity. The cache line size is 32 bytes and lines are read from memory using an efficient pipelined burst read cycle. Further performance gains are achieved by the implementation of a write allocation scheme.

Write Allocation

A write allocate, if enabled, occurs when the processor has a pending memory write cycle to a cacheable line and the line does not currently reside in the L1 cache. For more information, see the Implementation of Write Allocate in the K86™ Processors Application Note, order# 21326, and the “Cache Organization” chapter in the appropriate AMD-K6 or AMD-K6E processor data sheet.

This section describes two programmable mechanisms used by the processor to determine when to perform write allocate. When either of these mechanisms indicates that a pending write is to a cacheable area of memory, a write allocate is performed.

Before enabling write allocate or changing memory cacheability/writeability, the BIOS must writeback and invalidate the internal cache by using the WBINVD instruction. In addition, write allocate should be enabled only after performing any memory sizing or typing algorithms.
Figure 3. Write Handling Control Register (WHCR) (Models 7 and 8/[7:0])

Write Cacheability Detection Enable Bit

For proper functionality, always program bit 8 of WHCR to 0. See “Pipelining Support” on page 69 for more information on the WCDE bit.

Write Allocate Enable Limit Field

The WAELIM field is 7 bits wide. This field, multiplied by 4 Mbytes, defines an upper memory limit. Any pending write cycle that misses the L1 cache and that addresses memory below this limit causes the processor to perform a write allocate (assuming the address is not within a range where write allocates are disallowed).

Write allocate is disabled for memory accesses at and above this limit unless the processor determines a pending write cycle is cacheable by means of one of the other write allocate mechanisms—“Write to a Cacheable Page” and “Write to a Sector” (for more information, see the “Cache Organization” chapter in the appropriate AMD-K6 or AMD-K6E processor data sheet.

The maximum value of this limit is \((2^7 - 1) \cdot 4\) Mbytes = 508 Mbytes. When all the bits in this field are set to 0, all memory is above this limit and the write allocate mechanism is disabled (even if all bits in the WAELIM field are set to 0, write allocates can still occur due to the “Write to a Cacheable Page” and “Write to a Sector” mechanisms).

Once the BIOS determines the amount of RAM installed in the system, this number should also be used to program the WAELIM field. For example, a system with 32 Mbytes of RAM would program the WAELIM field with the value 0001000b.
This value (8), when multiplied by 4 Mbytes, yields 32 Mbytes as the write allocate limit.

The WAE15M bit is used to enable write allocations for the memory write cycles that address the 1 Mbyte of memory between 15 Mbytes and 16 Mbytes. This bit must be set to 1 to allow write allocates in this memory area.

This sub-mechanism of the WAELIM provides a memory hole to prevent write allocates. This memory hole is provided to account for a small number of uncommon memory-mapped I/O adapters that use this particular memory address space. If the system contains one of these peripherals, the bit should be set to 0 (even if the WAE15M bit is set to 0, write allocates can still occur between 15 Mbytes and 16 Mbytes due to the “Write to a Cacheable Page” and “Write to a Sector” mechanisms). The WAE15M bit is ignored if the value in the WAELIM field is set to less than 16 Mbytes.

By definition, write allocations are not performed in the memory area between 640 Kbytes and 1 Mbyte unless the processor determines a pending write cycle is cacheable by means of “Write to a Cacheable Page” or “Write to a Sector.” It is not safe to perform write allocations between 640 Kbytes and 1 Mbyte (000A_0000h to 000F_FFFFh) because it is considered a noncacheable region of memory.
SYSCALL/SYSRET Target Address Register (STAR)

Models 8, 9, and D implement the STAR register. This register contains the target EIP address used by the SYSCALL instruction and the 16-bit code and stack segment selector bases used by the SYSCALL and SYSRET instructions.

Figure 4 shows the format of the STAR register, and Table 11 defines the function of each field of the STAR register. The STAR register is MSR C000_0081h.

For more information about SYSCALL/SYSRET, see the SYSCALL and SYSRET Instruction Specification Application Note, order# 21086.

![Figure 4. SYSCALL/SYSRET Target Address Register (STAR) (Models 8, 9, and D)](image)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>R/W</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>63–48</td>
<td>SYSRET CS and SS Selector Base</td>
<td>R/W</td>
<td>During the SYSRET instruction, this field is copied into the CS register and the contents of this field, plus 1000b, are copied into the SS register.</td>
</tr>
<tr>
<td>47–32</td>
<td>SYSCALL CS and SS Selector Base</td>
<td>R/W</td>
<td>During the SYSCALL instruction, this field is copied into the CS register and the contents of this field, plus 1000b, are copied into the SS register.</td>
</tr>
<tr>
<td>31–0</td>
<td>Target EIP Address</td>
<td>R/W</td>
<td>During the SYSCALL instruction, this address is copied into the EIP and points to the new starting address.</td>
</tr>
</tbody>
</table>
Model 8/[F:8] Registers

The AMD-K6-2 processor Model 8/[F:8] and AMD-K6-2E processor Model 8/[F:8] provides the ten MSRs listed in Table 12.

The contents of ECX select the MSR to be addressed by the RDMSR and WRMSR instruction.

Table 12. Model-Specific Registers Supported by Model 8/[F:8]

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Mnemonic</th>
<th>ECX Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-Check Address Register</td>
<td>MCAR</td>
<td>00h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Machine-Check Type Register</td>
<td>MCTR</td>
<td>01h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Test Register 12</td>
<td>TR12</td>
<td>0Eh</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Time Stamp Counter</td>
<td>TSC</td>
<td>10h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Extended Feature Enable Register</td>
<td>EFER</td>
<td>C000_0080h</td>
<td>page 24</td>
<td>Newly defined for Model 8/[F:8]</td>
</tr>
<tr>
<td>Write Handling Control Register</td>
<td>WHCR</td>
<td>C000_0082h</td>
<td>page 27</td>
<td>Newly defined for Model 8/[F:8]</td>
</tr>
<tr>
<td>SYSCALL/SYSRET Target Address Register</td>
<td>STAR</td>
<td>C000_0081h</td>
<td>page 22</td>
<td>Identical to Model 8/[7:0]</td>
</tr>
<tr>
<td>UC/WC Cacheability Control Register</td>
<td>UWCCR</td>
<td>C000_0085h</td>
<td>page 30</td>
<td>New for Model 8/[F:8]</td>
</tr>
<tr>
<td>Processor State Observability Register</td>
<td>PSOR</td>
<td>C000_0087h</td>
<td>page 34</td>
<td>New for Model 8/[F:8]</td>
</tr>
<tr>
<td>Page Flush/Invalidate Register</td>
<td>PFIR</td>
<td>C000_0088h</td>
<td>page 36</td>
<td>New for Model 8/[F:8]</td>
</tr>
</tbody>
</table>
Extended Feature Enable Register (EFER)

The Extended Feature Enable Register (EFER) contains the control bits that enable the extended features of the processor. Figure 5 shows the format of the EFER register, and Table 13 defines the function of each bit of the EFER register. The EFER register is MSR C000_0080h.

Note: The EFER register as defined in models 7 and 8/[7:0] is defined differently in Model 8/[F:8]. A complete description of the newly defined register is included in this section for Model 8/[F:8].

Figure 5. Extended Feature Enable Register (EFER) (Model 8/[F:8])

Table 13. Extended Feature Enable Register (EFER) Definition (Model 8/[F:8])

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>R/W</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>63–4</td>
<td>Reserved</td>
<td>R</td>
<td>Writing a 1 to any reserved bit causes a general protection fault to occur. All reserved bits are always read as 0.</td>
</tr>
<tr>
<td>3-2</td>
<td>EWBE# Control (EWBEC)</td>
<td>R/W</td>
<td>This 2-bit field controls the behavior of the processor with respect to the ordering of write cycles and the EWBE# signal. EFER[3] and EFER[2] are Global EWBE# Disable (GEWBED) and Speculative EWBE Disable (SEWBED), respectively.</td>
</tr>
<tr>
<td>1</td>
<td>Data Prefetch Enable (DPE)</td>
<td>R/W</td>
<td>DPE must be set to 1 to enable data prefetching (this is the default setting following reset). If enabled, cache misses initiated by a memory read within a 32-byte cache line are conditionally followed by cache-line fetches of the other line in the 64-byte sector.</td>
</tr>
<tr>
<td>0</td>
<td>System Call Extension (SCE)</td>
<td>R/W</td>
<td>SCE must be set to 1 to enable the usage of the SYSCALL and SYSRET instructions.</td>
</tr>
</tbody>
</table>

External Write Buffer Empty Control Field

Model 8/[F:8] contains an 8-byte write merge buffer that allows the processor to conditionally combine data from multiple noncacheable write cycles into this merge buffer. The merge
buffer operates in conjunction with the Memory Type Range Registers (MTRRs). Refer to “UC/WC Cacheability Control Register (UWCCR)” on page 30 for a description of the MTRRs.

Merging multiple write cycles into a single write cycle reduces processor bus utilization and processor stalls, thereby increasing the overall system performance.

Out-of-Order Write Cycles. The presence of the merge buffer creates the potential to perform out-of-order write cycles relative to the processor’s cache. In general, the ordering of write cycles that are driven externally on the system bus and those that hit the processor’s cache can be controlled by the EWBE# signal. If EWBE# is sampled negated, the processor delays the commitment of write cycles to cache lines in the modified state or exclusive state in the processor’s cache. Therefore, the system logic can enforce strong ordering by negating EWBE# until the external write cycle is complete, thereby ensuring that a subsequent write cycle that hits the cache does not complete ahead of the external write cycle.

However, the addition of the write merge buffer introduces the potential for out-of-order write cycles to occur between writes to the merge buffer and writes to the processor’s cache. Because these writes occur entirely within the processor and are not sent out to the processor bus, the system logic is not able to enforce strong ordering with the EWBE# signal.

The EWBE# control (EWBEC) bits provide a mechanism for enforcing three different levels of write ordering in the presence of the write merge buffer:

Best Performance. EFER[3] is defined as the Global EWBE# Disable (GEWBED). When GEWBED equals 1, the processor does not attempt to enforce any write ordering internally or externally (the EWBE# signal is ignored). This is the maximum performance setting.

Close-to-Best Performance. EFER[2] is defined as the Speculative EWBE# Disable (SEWBED). SEWBED only affects the processor when GEWBED equals 0. If GEWBED equals 0 and SEWBED equals 1, the processor enforces strong ordering for all internal write cycles with the exception of write cycles addressed to a range of memory defined as uncacheable (UC) or write-combining (WC) by the MTRRs. In addition, the processor
samples the EWBE# signal. If EWBE# is sampled negated, the processor delays the commitment of write cycles to processor cache lines in the modified state or exclusive state until EWBE# is sampled asserted.

This setting provides performance comparable to, but slightly less than, the performance obtained when GEWBED equals 1 because some degree of write ordering is maintained.

Slowest Performance. If GEWBED equals 0 and SEWBED equals 0, the processor enforces strong ordering for all internal and external write cycles. In this setting, the processor assumes, or speculates, that strong order must be maintained between writes to the merge buffer and writes that hit the processor’s cache. Once the merge buffer is written out to the processor’s bus, the EWBE# signal is sampled. If EWBE# is sampled negated, the processor delays the commitment of write cycles to processor cache lines in the modified state or exclusive state until EWBE# is sampled asserted.

This setting is the default after RESET and provides the lowest performance of the three settings because full write ordering is maintained.

Write Ordering and Performance. Table 14 summarizes the three settings of the EWBEC field, along with the effect of write ordering and performance.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 or 1</td>
<td>None</td>
<td>Best</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>All except UC/WC</td>
<td>Close-to-Best</td>
</tr>
<tr>
<td>0 (Default)</td>
<td>0 (Default)</td>
<td>All</td>
<td>Slowest</td>
</tr>
</tbody>
</table>

Enforcing complete write ordering in a uniprocessor system is usually not necessary. In order to achieve the highest level of performance while still maintaining support for the EWBE# signal, AMD recommends that the BIOS set EFER[3:2] to 01b (close-to-best performance). Many uniprocessor systems do not support the EWBE# signal, in which case AMD recommends that the BIOS set EFER[3:2] to 10b or 11b (best performance).
Write Handling Control Register (WHCR)

The Write Handling Control Register (WHCR) (see Figure 6 on page 28) is an MSR that contains two fields—the Write Allocate Enable Limit (WAELIM) field and the Write Allocate Enable 15-to-16-Mbyte (WAE15M) bit. The WHCR register is MSR C000_0082h.

Note: The WHCR register as defined in the models 7 and 8/[7:0] is defined differently in models 8/[F:8], 9, and D. A complete description of the newly defined register is included in this section for models 8/[F:8], 9, and D.

AMD-K6 processors contain a split level-1 (L1) 64-Kbyte writeback cache organized as a separate 32-Kbyte instruction cache and a 32-Kbyte data cache with two-way set associativity. The cache line size is 32 bytes, and lines are read from memory using an efficient pipelined burst read cycle. Further performance gains are achieved by the implementation of a write allocation scheme.

Write Allocation

A write allocate, if enabled, occurs when the processor has a pending memory write cycle to a cacheable line and the line does not currently reside in the L1 cache. For more information on write allocate, see the *Implementation of Write Allocate in the K86™ Processors Application Note*, order# 21326 and see the “Cache Organization” chapter in the appropriate AMD-K6 or AMD-K6E processor data sheet.

This section describes two programmable mechanisms used by the processor to determine when to perform write allocate. When either of these mechanisms indicates that a pending write is to a cacheable area of memory, a write allocate is performed.

Before enabling write allocate or changing memory cacheability, the BIOS must write back and invalidate the internal cache by using the WBINVD instruction. In addition, write allocate should be enabled only after performing any memory sizing or typing algorithms.
The WAELIM field is 10 bits wide. This field, multiplied by 4 Mbytes, defines an upper memory limit. Any pending write cycle that misses the L1 cache and that addresses memory below this limit causes the processor to perform a write allocate (assuming the address is not within a range where write allocates are disallowed).

Write allocate is disabled for memory accesses at and above this limit unless the processor determines a pending write cycle is cacheable by means of one of the other write allocate mechanisms—“Write to a Cacheable Page” and “Write to a Sector” (for more information, see the “Cache Organization” chapter in the appropriate AMD-K6 or AMD-K6E processor data sheet).

The maximum value of this limit is \((2^{10} - 1) \cdot 4\) Mbytes. When all the bits in this field are set to 0, all memory is above this limit and the write allocate mechanism is disabled (even if all bits in the WAELIM field are set to 0, write allocates can still occur due to the “Write to a Cacheable Page” and “Write to a Sector” mechanisms).

Once the BIOS determines the amount of RAM installed in the system, this number should also be used to program the WAELIM field. For example, a system with 32 Mbytes of RAM would program the WAELIM field with the value 00_0000_1000b. This value (8), when multiplied by 4 Mbytes, yields 32 Mbytes as the write allocate limit.
Write Allocate Enable
15-to-16-Mbyte Field

The WAE15M bit is used to enable write allocations for the memory write cycles that address the 1 Mbyte of memory between 15 Mbytes and 16 Mbytes. This bit must be set to 1 to allow write allocates in this memory area.

This sub-mechanism of the WAELIM provides a memory hole to prevent write allocates. This memory hole is provided to account for a small number of uncommon memory-mapped I/O adapters that use this particular memory address space. If the system contains one of these peripherals, the bit should be set to 0 (even if the WAE15M bit is set to 0, write allocates can still occur between 15 Mbytes and 16 Mbytes due to the “Write to a Cacheable Page” and “Write to a Sector” mechanisms). The WAE15M bit is ignored if the value in the WAELIM field is set to less than 16 Mbytes.

By definition, write allocations are not performed in the memory area between 640 Kbytes and 1 Mbyte unless the processor determines a pending write cycle is cacheable by means of “Write to a Cacheable Page” or “Write to a Sector.” It is not safe to perform write allocations between 640 Kbytes and 1 Mbyte (000A_0000h to 000F_FFFFh) because it is considered a noncacheable region of memory. Additionally, if a memory region is defined as write-combinable or uncacheable by a MTRR, write allocates are not performed in that region.
UC/WC Cacheability Control Register (UWCCR)

Models 8/[F:8], 9, and D provide two variable-range Memory Type Range Registers (MTRRs)—MTRR0 and MTRR1—that each specify a range of memory. Each range can be defined as one of the following memory types:

- **Uncacheable (UC) Memory**—Memory read cycles are sourced directly from the specified memory address, and the processor does not allocate a cache line. Memory write cycles are targeted at the specified memory address, and a write allocation does not occur.

- **Write-Combining (WC) Memory**—Memory read cycles are sourced directly from the specified memory address, and the processor does not allocate a cache line. The processor conditionally combines data from multiple noncacheable write cycles that are addressed within this range into a merge buffer. Merging multiple write cycles into a single write cycle reduces processor bus utilization and processor stalls, thereby increasing the overall system performance. This memory type is applicable for linear video frame buffers.

Note: The MTRRs defined in this document are not software-compatible to the MTRRs defined by the Pentium Pro and Pentium II processors.

The programmer accesses the MTRRs by addressing the 64-bit MSR known as the UC/WC Cacheability Control Register (UWCCR). The MSR address of the UWCCR is C000_0085h.

Following reset, all bits in the UWCCR register are set to 0. MTRR0 (lower 32 bits of the UWCCR register) defines the size and memory type of range 0 and MTRR1 (upper 32 bits) defines the size and memory type of range 1 (see Figure 7 on page 31).

Prior to programming write-combining or uncacheable areas of memory in the UWCCR, the software must disable the processor’s cache, then flush the cache. This can be achieved by setting the CD bit in CR0 to 1 and executing the WBINVD instruction. Following the programming of the UWCCR, the processor’s cache must be enabled by setting the CD bit in CR0 to 0.
Figure 7. UC/WC Cacheability Control Register (UWCCR) (Models 8/F:8, 9, and D)

Physical Base Address n (n=0, 1)
This address is the 15 most-significant bits of the physical base address of the memory range. The least-significant 17 bits of the base address are not needed because the base address is by definition always aligned on a 128-Kbyte boundary.

Physical Address Mask n (n=0, 1)
This value is the 15 most-significant bits of a physical address mask that is used to define the size of the memory range. This mask is logically ANDed with both the physical base address field of the UWCCR register and the physical address generated by the processor. If the results of the two AND operations are equal, then the generated physical address is considered within the range. That is, if:

Mask & Physical Base Address = Mask & Physical Address Generated

then, the physical address generated by the processor is in the range.

WCn (n=0, 1)
When set to 1, this memory range is defined as write-combinable (refer to Table 15). Write-combinable memory is uncachable.

UCn (n=0, 1)
When set to 1, this memory range is defined as uncachable (refer to Table 15).

<table>
<thead>
<tr>
<th>Table 15. WC/UC Memory Type for UWCCR Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCn</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0 or 1</td>
</tr>
</tbody>
</table>
Memory-Range Restrictions

The following rules regarding the address alignment and size of each range must be adhered to when programming the physical base address and physical address mask fields of the UWCCR register:

- The minimum size of each range is 128 Kbytes.
- The physical base address must be aligned on a 128-Kbyte boundary.
- The physical base address must be range-size aligned. For example, if the size of the range is 1 Mbyte, then the physical base address must be aligned on a 1-Mbyte boundary.
- All bits set to 1 in the physical address mask must be contiguous. Likewise, all bits set to 0 in the physical address mask must be contiguous. For example:

 111_1111_1100_0000b is a valid physical address mask.

 111_1111_1101_0000b is invalid.

Table 16 lists the valid physical address masks and the resulting range sizes that can be programmed in the UWCCR register.

Table 16. Valid Masks and Range Sizes for UWCCR Register

<table>
<thead>
<tr>
<th>Masks</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>111_1111_1111_1111b</td>
<td>128 Kbytes</td>
</tr>
<tr>
<td>111_1111_1111_1110b</td>
<td>256 Kbytes</td>
</tr>
<tr>
<td>111_1111_1111_1100b</td>
<td>512 Kbytes</td>
</tr>
<tr>
<td>111_1111_1111_1100b</td>
<td>1 Mbyte</td>
</tr>
<tr>
<td>111_1111_1111_0000b</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>111_1111_1110_0000b</td>
<td>4 Mbytes</td>
</tr>
<tr>
<td>111_1111_1100_0000b</td>
<td>8 Mbytes</td>
</tr>
<tr>
<td>111_1111_1000_0000b</td>
<td>16 Mbytes</td>
</tr>
<tr>
<td>111_1111_0000_0000b</td>
<td>32 Mbytes</td>
</tr>
<tr>
<td>111_1110_0000_0000b</td>
<td>64 Mbytes</td>
</tr>
<tr>
<td>111_1100_0000_0000b</td>
<td>128 Mbytes</td>
</tr>
<tr>
<td>111_1000_0000_0000b</td>
<td>256 Mbytes</td>
</tr>
<tr>
<td>111_0000_0000_0000b</td>
<td>512 Mbytes</td>
</tr>
<tr>
<td>110_0000_0000_0000b</td>
<td>1 Gbyte</td>
</tr>
<tr>
<td>100_0000_0000_0000b</td>
<td>2 Gbytes</td>
</tr>
<tr>
<td>000_0000_0000_0000b</td>
<td>4 Gbytes</td>
</tr>
</tbody>
</table>
Examples

Suppose that the range of memory from 16 Mbytes to 32 Mbytes is uncacheable, and the 8-Mbyte range of memory on top of 1 Gbyte is write-combinable. Range 0 is defined as the uncacheable range, and range 1 is defined as the write-combining range.

- Extracting the 15 most-significant bits of the 32-bit physical base address that corresponds to 16 Mbytes (0100_0000h) yields a physical base address 0 field of 000_0000_1000_0000b. Because the uncacheable range size is 16 Mbytes, the physical mask value 0 field is 111_1111_1000_0000b, according to Table 16 on page 32. Bit 1 of the UWCCR register (WC0) is set to 0, and bit 0 of the UWCCR register is set to 1 (UC0).

- Extracting the 15 most-significant bits of the 32-bit physical base address that corresponds to 1 Gbyte (4000_0000h) yields a physical base address 1 field of 010_0000_0000_0000b. Because the write-combining range size is 8 Mbytes, the physical mask value 1 field is 111_1111_1100_0000b, according to Table 16. Bit 33 of the UWCCR register (WC1) is set to 1 and bit 32 of the UWCCR register is set to 0 (UC1).
Processor State Observability Register (PSOR)

Models 8/[F:8], 9, and standard-power versions of Model D provide the Processor State Observability Register (PSOR) as defined in Figure 8. The PSOR register is MSR C000_0087h.

Note: See page 46 for definitions of the PSOR bit fields for low-power Model D processors.

Figure 8. Processor State Observability Register (PSOR) (Models 8/[F:8], 9, and Standard-Power D)

NOL2 Bit
This read-only bit indicates whether the processor contains an L2 cache.

*Note: This bit is always set to 1 for Model 8/[F:8].

Note: This bit is always set to 0 for Models 9 and D.

STEP Field
This read-only field contains the stepping ID. This is identical to the value returned by the CPUID standard function 1 in EAX[3:0].

BF Field
This read-only field contains the value of the BF signals sampled by the processor during the falling transition of RESET, which allows the BIOS to determine the frequency of the host bus.

- The core frequency must first be known, which can be determined using the Time Stamp Counter method (See “Time Stamp Counter (TSC)” on page 16).
- The core frequency is then divided by the processor-clock to bus-clock ratio as determined by the BF field of the PSOR register (see Table 17 and Table 18 on page 35).
- The result is the frequency of the processor bus.
Table 17. Processor-to-Bus Clock Ratios (Models 8/[F:8] and 9)

<table>
<thead>
<tr>
<th>State of BF[2:0]</th>
<th>Processor-Clock to Bus-Clock Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100b</td>
<td>2.5x</td>
</tr>
<tr>
<td>101b</td>
<td>3.0x</td>
</tr>
<tr>
<td>110b</td>
<td>6.0x(^1)</td>
</tr>
<tr>
<td>111b</td>
<td>3.5x</td>
</tr>
<tr>
<td>000b</td>
<td>4.5x</td>
</tr>
<tr>
<td>001b</td>
<td>5.0x</td>
</tr>
<tr>
<td>010b</td>
<td>4.0x</td>
</tr>
<tr>
<td>011b</td>
<td>5.5x</td>
</tr>
</tbody>
</table>

Notes:

1. The 2.0x ratio that is supported on models 7 and 8/[7:0] is not supported on models 8/[F:8] or 9. Instead, if BF[2:0] equals 110b, a ratio of 6.0x is selected.

Table 18. Processor-to-Bus Clock Ratios (Model Standard-Power D)

<table>
<thead>
<tr>
<th>State of BF[2:0]</th>
<th>Processor-Clock to Bus-Clock Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100b</td>
<td>2.0x(^1)</td>
</tr>
<tr>
<td>101b</td>
<td>3.0x</td>
</tr>
<tr>
<td>110b</td>
<td>6.0x</td>
</tr>
<tr>
<td>111b</td>
<td>3.5x</td>
</tr>
<tr>
<td>000b</td>
<td>4.5x</td>
</tr>
<tr>
<td>001b</td>
<td>5.0x</td>
</tr>
<tr>
<td>010b</td>
<td>4.0x</td>
</tr>
<tr>
<td>011b</td>
<td>5.5x</td>
</tr>
</tbody>
</table>

Notes:

1. The 2.5x ratio that is supported on model 8/[F:8] and 9 is not supported on standard-power model D. Instead, if BF[2:0] equals 100b, a ratio of 2.0x is selected.
Page Flush/Invalidate Register (PFIR)

Models 8/[F:8], 9, and D contain the Page Flush/Invalidate Register (PFIR) (see Figure 9) that allows cache invalidation and optional flushing of a specific 4-Kbyte page from the linear address space.

The total amount of L1 cache in the processor is 64 Kbytes. Using this register can result in a much lower cycle count for flushing particular pages versus flushing the entire cache. When the PFIR is written to (using the WRMSR instruction), the invalidation and, optionally, the flushing begins.

The PFIR register is MSR C000_0088h.

Note: The invalidate and flush operations affect both the L1 and L2 caches on models 9 and D.

![Figure 9. Page Flush/Invalidate Register (PFIR) (Models 8/[F:8], 9, and D)](image)

LINPAGE Field

This 20-bit field must be written with bits 31:12 of the linear address of the 4-Kbyte page that is to be invalidated and optionally flushed from the L1 cache.

PF Bit

If an attempt to invalidate or flush a page results in a page fault, the processor sets the PF bit to 1, and the invalidate or flush operation is not performed (even though invalidate operations do not normally generate page faults). In this case, an actual page fault exception is not generated.

If the PF bit equals 0 after an invalidate or flush operation, then the operation executed successfully. The PF bit must be read after every write to the PFIR register to determine if the invalidate or flush operation executed successfully.
F/I Bit

This bit is used to control the type of action that occurs to the specified linear page. If a 0 is written to this bit, the operation is a flush, in which case all cache lines in the modified state within the specified page are written back to memory, after which the entire page is invalidated. If a 1 is written to this bit, the operation is an invalidation, in which case the entire page is invalidated without the occurrence of any writebacks.
Model 9 Registers

The AMD-K6-III processor (Model 9) provides the eleven model-specific registers listed in Table 19.

The contents of ECX selects the MSR to be addressed by the RDMSR and WRMSR instruction.

The AMD-K6-III processor contains a split Level-1 (L1) 64-Kbyte writeback cache organized as a separate 32-Kbyte instruction cache and a 32-Kbyte data cache with two-way set associativity. The cache line size is 32 bytes, and lines are read from memory using an efficient pipelined burst read cycle. In addition, the processor also contains a 256-Kbyte, 4-way set associative, unified level-2 (L2) cache. Further performance gains are achieved by the implementation of a write allocation scheme.

Table 19. Model-Specific Registers Supported by Model 9

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Mnemonic</th>
<th>ECX Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-Check Address Register</td>
<td>MCAR</td>
<td>00h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Machine-Check Type Register</td>
<td>MCTR</td>
<td>01h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Test Register 12</td>
<td>TR12</td>
<td>0Eh</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Time Stamp Counter</td>
<td>TSC</td>
<td>10h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Extended Feature Enable Register</td>
<td>EFER</td>
<td>C000_0080h</td>
<td>page 39</td>
<td>Adds L2 Disable bit (L2D) to Model 8/[F:8] implementation</td>
</tr>
<tr>
<td>Write Handling Control Register</td>
<td>WHCR</td>
<td>C000_0082h</td>
<td>page 27</td>
<td>Identical to Model 8/[F:8]</td>
</tr>
<tr>
<td>SYSCALL/SYSRET Target Address Register</td>
<td>STAR</td>
<td>C000_0081h</td>
<td>page 22</td>
<td>Identical to Model 8/[7:0]</td>
</tr>
<tr>
<td>UC/WC Cacheability Control Register</td>
<td>UWCCR</td>
<td>C000_0085h</td>
<td>page 30</td>
<td>Identical to Model 8/[F:8]</td>
</tr>
<tr>
<td>Processor State Observability Register</td>
<td>PSOR</td>
<td>C000_0087h</td>
<td>page 34</td>
<td>Identical to Model 8/[F:8]</td>
</tr>
<tr>
<td>Page Flush/Invalidate Register</td>
<td>PFIR</td>
<td>C000_0088h</td>
<td>page 36</td>
<td>Identical to Model 8/[F:8]. The invalidate and flush operations affect both the L1 and L2 caches on the AMD-K6-III processor.</td>
</tr>
<tr>
<td>Level-2 Cache Array Access Register</td>
<td>L2AAR</td>
<td>C000_0089h</td>
<td>page 40</td>
<td>New for Model 9</td>
</tr>
</tbody>
</table>
Extended Feature Enable Register (EFER)

Figure 10 shows the format of the EFER register for models 9 and D, and Table 20 defines the function of each bit of the EFER register. The EFER register is MSR C000_0080h.

Note: Bits 3:0 of the EFER register in models 9 and D are identical to the implementation of these bits in Model 8/8. For models 9 and D, the L2 Disable bit (L2D), EFER[4], is added. The complete new register description is included in this section.

![Extended Feature Enable Register (EFER)](image)

Table 20. Extended Feature Enable Register (EFER) Definition (Models 9 and D)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>R/W</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>63–5</td>
<td>Reserved</td>
<td>R</td>
<td>Writing a 1 to any reserved bit causes a general protection fault to occur. All reserved bits are always read as 0.</td>
</tr>
<tr>
<td>4</td>
<td>L2 Disable (L2D)</td>
<td>R/W</td>
<td>If L2D is set to 1, the L2 cache is completely disabled. This bit is provided for debug and testing purposes. For normal operation and maximum performance, this bit must be set to 0 (this is the default setting following reset).</td>
</tr>
<tr>
<td>3-2</td>
<td>EWBE Control (EWBEC)</td>
<td>R/W</td>
<td>This 2-bit field controls the behavior of the processor with respect to the ordering of write cycles and the EWBE# signal. EFER[3] and EFER[2] are Global EWBE# Disable (GEWBED) and Speculative EWBE# Disable (SEWBED), respectively.</td>
</tr>
<tr>
<td>1</td>
<td>Data Prefetch Enable (DPE)</td>
<td>R/W</td>
<td>DPE must be set to 1 to enable data prefetching (this is the default setting following reset). If enabled, cache misses initiated by a memory read within a 32-byte cache line are conditionally followed by cache-line fetches of the other line in the 64-byte sector.</td>
</tr>
<tr>
<td>0</td>
<td>System Call Extension (SCE)</td>
<td>R/W</td>
<td>SCE must be set to 1 to enable usage of the SYSCALL and SYSRET instructions.</td>
</tr>
</tbody>
</table>

Note: Setting L2D to 1 does not guarantee cache coherency. To ensure coherency, the processor’s caches must be disabled (by setting the CD bit of the CR0 register to 1), then flushed prior to setting L2D to 1.
Level-2 Cache Array Access Register (L2AAR)

Models 9 and D provide the L2AAR register that allows for direct access to the L2 cache and L2 tag arrays. The L2 cache in the AMD-K6-III processor is organized as shown in Figure 11:

- Four 64-Kbyte ways
- Each way contains 1024 sets
- Each set contains four 64-byte sectors (one sector in each way)
- Each sector contains two 32-byte cache lines
- Each cache line contains four 8-byte octets
- Each octet contains an upper and lower dword (4 bytes)

Each line within a sector contains its own MESI state bits, and associated with each sector is a tag and least recently used (LRU) information.

The L2AAR register is MSR C000_0089h.

The operation that is performed on the L2 cache is a function of the instruction executed—RDMSR or WRMSR—and the contents of the EDX register. The EDX register specifies the location of the access, and whether the access is to the L2 cache data or tags (see Figure 13 on page 41).

Figure 12 on page 41 shows the L2 cache sector and line organization. If bit 5 (see Figure 13) of the address of a cache line equals 1, then this cache line is stored in Line 1 of a sector. Similarly, if bit 5 of the address of a cache line equals 0, then this cache line is stored in Line 0 of a sector.
Bit 20 of EDX (T/D) determines whether the access is to the L2 cache data or tag. Table 21 on page 42 describes the operation that is performed based on the instruction and the T/D bit.

Figure 12. L2 Cache Sector and Line Organization

Figure 13. L2 Tag or Data Location (AMD-K6™-III Processor)—EDX
Table 21. Tag versus Data Selector

<table>
<thead>
<tr>
<th>Instruction</th>
<th>T/D (EDX[20])</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDMSR</td>
<td>0</td>
<td>Read dword from L2 data array into EAX. Dword location is specified by EDX.</td>
</tr>
<tr>
<td>RDMSR</td>
<td>1</td>
<td>Read tag, line state and LRU information from L2 tag array into EAX. Location of tag is specified by EDX.</td>
</tr>
<tr>
<td>WRMSR</td>
<td>0</td>
<td>Write dword to the L2 data array using data in EAX. Dword location is specified by EDX.</td>
</tr>
<tr>
<td>WRMSR</td>
<td>1</td>
<td>Write tag, line state and LRU information into L2 tag array from EAX. Location of tag is specified by EDX.</td>
</tr>
</tbody>
</table>

When the L2AAR is read or written, EDX is left unchanged. This facilitates multiple accesses when testing the entire cache/tag array.

If the L2 cache data is read (as opposed to reading the tag information), the result (dword) is placed in EAX in the format as illustrated in Figure 14. Similarly, if the L2 cache data is written, the write data is taken from EAX.

![Figure 14. L2 Data–EAX](image)

If the L2 tag is read (as opposed to reading the cache data), the result is placed in EAX in the format as illustrated in Figure 15 on page 43. Similarly, if the L2 tag is written, the write data is taken from EAX.

When accessing the L2 tag, the Line, Octet, and Dword fields of the EDX register are ignored.
Figure 15. L2 Tag Information (AMD-K6™-III Processor)—EAX

LRU (Least Recently Used) Field

For the 4-way set associative L2 cache, each way has a 2-bit LRU field for each sector. Values for the LRU field are 00b, 01b, 10b, and 11b, where 00b indicates that the sector is “most recently used,” and 11b indicates that the sector is “least recently used” (see Figure 16). EAX[7:6] indicate LRU information for Way 0, EAX[5:4] for Way 1, EAX[3:2] for Way 2, and EAX[1:0] for Way 3.

Figure 16. LRU Byte

When writing to the L2 tag of the AMD-K6-III processor, special consideration must be given to the least significant bit of the Tag field of the EAX register—EAX[15]. The length of the L2 tag required to support the 256-Kbyte L2 cache on the AMD-K6-III processor is 16 bits, which corresponds to bits 31:16 of the EAX register. However, the AMD-K6-III processor provides a total of 17 bits for storing the L2 tag—that is, 16 bits for the tag (EAX[31:16]), plus an additional bit for internal purposes (EAX[15]). During normal operation, the AMD-K6-III processor ensures that this additional bit (bit 15) always corresponds to the set in which the tag resides. Note that bits...
15:6 of the address determine the set, in which case bit 15 equal to 0 addresses sets 0 through 511, and bit 15 equal to 1 addresses sets 512 through 1023.

In order to set the full 17-bit L2 tag properly when using the L2AAR register, EAX[15] must likewise correspond to the set in which the tag is being written—that is, EAX[15] must be equal to EDX[15] (refer to Figure 13 on page 41 and Figure 15 on page 43).

It is important to note that this special consideration is only required if the AMD-K6-III processor will subsequently be expected to properly execute instructions or access data from the L2 cache following the setup of the L2 cache by means of the L2AAR register. If the intent of using the L2AAR register is solely to test or debug the L2 cache without the subsequent intent of executing instructions or accessing data from the L2 cache, then this consideration is not required.
Model D Registers

The AMD-K6-2E+ and AMD-K6-IIIE+ processors (Model D) provide the twelve model-specific registers listed in Table 22. The contents of ECX selects the MSR to be addressed by the RDMSR and WRMSR instruction.

The AMD-K6-2E+ and AMD-K6-IIIE+ processors contain a split Level-1 (L1) 64-Kbyte writeback cache organized as a separate 32-Kbyte instruction cache and a 32-Kbyte data cache with two-way set associativity. The cache line size is 32 bytes, and lines are read from memory using an efficient pipelined burst read cycle. In addition, these processors also contain a 128-Kbyte (AMD-K6-2E+ processor) or a 256-Kbyte (AMD-K6-IIIE+ processor), 4-way set associative, unified Level-2 (L2) cache. Further performance gains are achieved by the implementation of a write allocation scheme.

Table 22. Model-Specific Registers Supported by Model D

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Mnemonic</th>
<th>ECX Value</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-Check Address Register</td>
<td>MCAR</td>
<td>00h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Machine-Check Type Register</td>
<td>MCTR</td>
<td>01h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Test Register 12</td>
<td>TR12</td>
<td>0Eh</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Time Stamp Counter</td>
<td>TSC</td>
<td>10h</td>
<td>page 16</td>
<td>Identical on all models</td>
</tr>
<tr>
<td>Extended Feature Enable Register</td>
<td>EFER</td>
<td>C000_0080h</td>
<td>page 39</td>
<td>Adds L2 Disable bit (L2D) to Model 8/[F:8] implementation</td>
</tr>
<tr>
<td>Write Handling Control Register</td>
<td>WHCR</td>
<td>C000_0082h</td>
<td>page 27</td>
<td>Identical to Model 8/[F:8]</td>
</tr>
<tr>
<td>SYSCALL/SYSRET Target Address Register</td>
<td>STAR</td>
<td>C000_0081h</td>
<td>page 22</td>
<td>Identical to Model 8/[7:0]</td>
</tr>
<tr>
<td>UC/WC Cacheability Control Register</td>
<td>UWCCR</td>
<td>C000_0085h</td>
<td>page 30</td>
<td>Identical to Model 8/[F:8]</td>
</tr>
<tr>
<td>Processor State Observability Register</td>
<td>PSOR</td>
<td>C000_0087h</td>
<td>page 34<sup>1</sup>, page 46<sup>2</sup></td>
<td>Standard-power implementation is identical to Model 8/[F:8]. Low-power implementation adds new fields and renames BF to EBF.</td>
</tr>
<tr>
<td>Page Flush/Invalidate Register</td>
<td>PFIR</td>
<td>C000_0088h</td>
<td>page 36</td>
<td>Identical to Model 8/[F:8]</td>
</tr>
<tr>
<td>Level-2 Cache Array Access Register</td>
<td>L2AAR</td>
<td>C000_0089h</td>
<td>page 48</td>
<td>Identical to Model 9, but note differing L2 cache sizes on Model D.</td>
</tr>
<tr>
<td>Enhanced Power Management Register<sup>2</sup></td>
<td>EPMR</td>
<td>C000_0086h</td>
<td>page 54</td>
<td>New for Model D. Supported on low-power versions only.</td>
</tr>
</tbody>
</table>

Notes:
1. Standard-power versions only.
2. Low-power versions only.
Processor State Observability Register (PSOR) (Low-Power Versions)

The low-power versions of the AMD-K6-2E+ and AMD-K6-IIIE+ processors provide the Processor State Observability Register (PSOR) as defined in Figure 17.

Note: Standard-power versions of Model D support the PSOR as defined on page 34.

The PSOR register is MSR C000_0087h.

Figure 17. Processor State Observability Register (PSOR) (Model D Low-Power Versions)

PBF[2:0] Field

This read-only field contains the BF divisor values externally applied to the processor BF[2:0] pins. These input BF values are sampled by the processor during the falling transition of RESET.

Note: This BF divisor value may be different than the BF divisor value supplied to the processor’s internal PLL.

VID Field

This read-only field contains the Voltage ID bits driven to the processor VID[4:0] pins at RESET. These bits are initialized to 01010b and driven on the VID[4:0] pins at RESET.

Note: Low-power AMD-K6-2E+ and AMD-K6-IIIE+ processors support AMD PowerNow! technology, which enables dynamic alteration of the processor’s core voltage. See “Enhanced Power Management Register (EPMR) (Low-Power Versions)” on page 54 for information on programming the VID[4:0] pins.
Preliminary Information

Embedded AMD-K6™ Processors BIOS Design Guide

Model D Registers

- **NOL2 Bit**
 - This read-only bit indicates whether the processor contains an L2 cache.

 Note: This bit is always set to 0 for Model D.

- **STEP Field**
 - This read-only field contains the stepping ID. This is identical to the value returned by CPUID standard function 1 in EAX[3:0].

- **EBF[2:0] Field**
 - This read-only field contains the effective value of the BF divisor supplied to the processor’s internal PLL, which allows the BIOS to determine the frequency of the host bus.
 - The core frequency must first be determined using the Time Stamp Counter method (See “Time Stamp Counter (TSC)” on page 16).
 - The core frequency is then divided by the processor-to-bus clock ratio as determined by the EBF field of the PSOR register (see Table 23).
 - The result is the frequency of the processor bus.

Table 23. Processor-to-Bus Clock Ratios (Low-Power Model D)

<table>
<thead>
<tr>
<th>State of EBF[2:0]</th>
<th>Processor-to-Bus Clock Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100b</td>
<td>2.0x^1</td>
</tr>
<tr>
<td>101b</td>
<td>3.0x</td>
</tr>
<tr>
<td>110b</td>
<td>6.0x</td>
</tr>
<tr>
<td>111b</td>
<td>3.5x</td>
</tr>
<tr>
<td>000b</td>
<td>4.5x</td>
</tr>
<tr>
<td>001b</td>
<td>5.0x</td>
</tr>
<tr>
<td>010b</td>
<td>4.0x</td>
</tr>
<tr>
<td>011b</td>
<td>5.5x</td>
</tr>
</tbody>
</table>

Notes:

1. The 2.5x ratio that was supported on Models 8 and 9 is not supported on low-power Model D. Instead, a ratio of 2.0x is selected when EBF[2:0] equals 100b.
Level-2 Cache Array Access Register (L2AAR)

Model D also provides the L2AAR register that allows for direct access to the L2 cache and L2 tag arrays.

Note: The L2AAR register is identical to the Model 9 implementation. Some information in this section is duplicated to account for the different L2 cache sizes in the AMD-K6-2E+ and AMD-K6-IIIE+ processors.

The L2 cache in the AMD-K6-2E+ and AMD-K6-IIIE+ processors is organized as shown in Figure 18:

- Four 32-Kbyte ways (AMD-K6-2E+ processor) or four 64-Kbyte ways (AMD-K6-IIIE+ processor)
- Each way contains 512 (AMD-K6-2E+ processor) or 1024 (AMD-K6-IIIE+ processor) sets
- Each set contains four 64-byte sectors (one sector in each way)
- Each sector contains two 32-byte cache lines
- Each cache line contains four 8-byte octets
- Each octet contains an upper and lower dword (4 bytes)

Each line within a sector contains its own MESI state bits, and associated with each sector is a tag and LRU (Least Recently Used) information.
The L2AAR register is MSR C000_0089h.

The operation that is performed on the L2 cache is a function of the instruction executed—RDMSR or WRMSR—and the contents of the EDX register. The EDX register specifies the location of the access, and whether the access is to the L2 cache data or tags (refer to Figure 20 on page 50 for the AMD-K6-2E+ processor and Figure 21 on page 50 for the AMD-K6-IIIE+ processor).

Figure 19 shows the L2 cache sector and line organization. If bit 5 (refer to Figure 20 for the AMD-K6-2E+ processor and Figure 21 for the AMD-K6-IIIE+ processor) of the address of a cache line equals 1, then this cache line is stored in Line 1 of a sector. Similarly, if bit 5 of the address of a cache line equals 0, then this cache line is stored in Line 0 of a sector.

Bit 15 of EDX, which is the most significant bit of the Set field, is not used for the AMD-K6-2E+ because there are half as many sets implemented on the AMD-K6-2E+ (512 sets) as the AMD-K6-IIIE+ processor (1024 sets). Bit 20 of EDX (T/D) determines whether the access is to the L2 cache data or tag. Table 24 on page 51 describes the operation that is performed based on the instruction and the T/D bit.
Preliminary Information

Embedded AMD-K6™ Processors BIOS Design Guide

Figure 20. L2 Tag or Data Location (AMD-K6™-2E+ Processor)—EDX

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Selects the desired cache set</td>
<td>14-6</td>
</tr>
<tr>
<td>Line</td>
<td>Selects Line1 (1) or Line0 (0)</td>
<td>5</td>
</tr>
<tr>
<td>Octet</td>
<td>Selects one of four octets</td>
<td>4-3</td>
</tr>
<tr>
<td>Dword</td>
<td>Selects upper (1) or lower (0) dword</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 21. L2 Tag or Data Location (AMD-K6™-III+ Processor)—EDX

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set</td>
<td>Selects the desired cache set</td>
<td>15-6</td>
</tr>
<tr>
<td>Line</td>
<td>Selects Line1 (1) or Line0 (0)</td>
<td>5</td>
</tr>
<tr>
<td>Octet</td>
<td>Selects one of four octets</td>
<td>4-3</td>
</tr>
<tr>
<td>Dword</td>
<td>Selects upper (1) or lower (0) dword</td>
<td>2</td>
</tr>
</tbody>
</table>
When the L2AAR is read or written, EDX is left unchanged. This facilitates multiple accesses when testing the entire cache/tag array.

If the L2 cache data is read (as opposed to reading the tag information), the result (dword) is placed in EAX in the format as illustrated in Figure 22. Similarly, if the L2 cache data is written, the write data is taken from EAX.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>T/D (EDX[20])</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDMSR</td>
<td>0</td>
<td>Read dword from L2 data array into EAX. Dword location is specified by EDX.</td>
</tr>
<tr>
<td>RDMSR</td>
<td>1</td>
<td>Read tag, line state and LRU information from L2 tag array into EAX. Location of tag is specified by EDX.</td>
</tr>
<tr>
<td>WRMSR</td>
<td>0</td>
<td>Write dword to the L2 data array using data in EAX. Dword location is specified by EDX.</td>
</tr>
<tr>
<td>WRMSR</td>
<td>1</td>
<td>Write tag, line state and LRU information into L2 tag array from EAX. Location of tag is specified by EDX.</td>
</tr>
</tbody>
</table>

When accessing the L2 tag, the Line, Octet, and Dword fields of the EDX register are ignored.

Figure 22. L2 Data—EAX (same as Figure 14)

If the L2 tag is read (as opposed to reading the cache data), the result is placed in EAX in the format as illustrated in Figure 23 on page 52 (AMD-K6-2E+ processor) and Figure 24 (AMD-K6-IIIE+ processor). Similarly, if the L2 tag is written, the write data is taken from EAX.
LRU (Least Recently Used) Field

For the 4-way set associative L2 cache, each way has a 2-bit LRU field for each sector. Values for the LRU field are 00b, 01b, 10b, and 11b, where 00b indicates that the sector is “most recently used,” and 11b indicates that the sector is “least recently used” (see Figure 25 on page 53). EAX[7:6] indicate the LRU information for Way 0, EAX[5:4] for Way 1, EAX[3:2] for Way 2, and EAX[1:0] for Way 3.
When writing to the L2 tag of the AMD-K6-IIIIE+ processor, special consideration must be given to the least significant bit of the Tag field of the EAX register—EAX[15]. The length of the L2 tag required to support the 256-Kbyte L2 cache on the AMD-K6-III and AMD-K6-IIIIE+ is 16 bits, which corresponds to bits 31:16 of the EAX register. However, the AMD-K6-IIIIE+ processor provides a total of 17 bits for storing the L2 tag—that is, 16 bits for the tag (EAX[31:16]), plus an additional bit for internal purposes (EAX[15]). During normal operation, the AMD-K6-III and AMD-K6-IIIIE+ ensure that this additional bit (bit 15) always corresponds to the set in which the tag resides. Note that bits 15:6 of the address determine the set, in which case bit 15 equal to 0 addresses sets 0 through 511, and bit 15 equal to 1 addresses sets 512 through 1023.

In order to set the full 17-bit L2 tag properly when using the L2AAR register, EAX[15] must likewise correspond to the set in which the tag is being written—that is, EAX[15] must be equal to EDX[15] (refer to Figure 21 on page 50 and Figure 24 on page 52).

It is important to note that this special consideration is only required if the AMD-K6-IIIIE+ processor will subsequently be expected to properly execute instructions or access data from the L2 cache following the setup of the L2 cache by means of the L2AAR register. If the intent of using the L2AAR register is solely to test or debug the L2 cache without the subsequent intent of executing instructions or accessing data from the L2 cache, then this consideration is not required.

Note: This special consideration when writing to the L2 tag is not applicable to the AMD-K6-2E+ processor.
Enhanced Power Management Register (EPMR) (Low-Power Versions)

To support AMD PowerNow! technology, the low-power versions of the AMD-K6-2E+ and AMD-K6-IIIE+ processors Model D are designed with enhanced power management (EPM) features: dynamic bus divisor control, and dynamic voltage ID control.

The EPMR register (see Figure 26) defines the base address for a 16-byte block of I/O address space. Enabling the EPMR allows software to access the EPM 16-byte I/O block, which contains bits for enabling, controlling, and monitoring the EPM features. Table 25 defines the functions of each bit in the EPMR register. The EPMR register is MSR C000_0086h.

![Figure 26. Enhanced Power Management Register (EPMR) (Low-Power Model D)](image)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>R/W</th>
<th>Function¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>63-16</td>
<td>Reserved</td>
<td>R</td>
<td>All reserved bits are always read as 0.</td>
</tr>
<tr>
<td>15-4</td>
<td>I/O BASE Address (IOBASE)</td>
<td>R/W</td>
<td>IOBASE defines a base address for a 16-byte block of I/O address space accessible for enabling, controlling, and monitoring the EPM features.</td>
</tr>
<tr>
<td>3-2</td>
<td>Reserved</td>
<td>R</td>
<td>All reserved bits are always read as 0.</td>
</tr>
<tr>
<td>1</td>
<td>Generate Special Bus Cycle (GSBC)</td>
<td>R/W</td>
<td>This bit controls whether a special bus cycle is generated upon dword accesses within the EPM 16-byte block. If set to 1, an EPM special bus cycle is generated, where BE[7:0]# = BFh and A[4:3] = 00b.</td>
</tr>
<tr>
<td>0</td>
<td>Enable AMD PowerNow! Technology Management (EN)</td>
<td>R/W</td>
<td>This bit controls access to the mapped I/O address space for the EPM features. Clearing this bit does not affect the state of bits defined in the EPM 16-byte I/O block.</td>
</tr>
</tbody>
</table>

Notes:
1. All bits default to 0 when RESET is asserted.
EPM 16-Byte I/O Block (Low-Power Versions Only)

The EPM 16-byte I/O block contains one 4-byte field—Bus Divisor and Voltage ID Control (BVC)—for enabling, controlling, and monitoring the EPM features (see Figure 27). All accesses to the EPM 16-byte I/O block must be aligned dword accesses. Except for the EPM special bus cycle, valid accesses to the EPM 16-byte block do not generate I/O bus cycles, while non-aligned and non-dword accesses are passed to the I/O bus.

![Figure 27. EPM 16-Byte I/O Block (Low-Power Model D)](image)

Table 26 defines the function of the byte-field within the EPM 16-byte I/O block mapped by the EPMR.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
<th>R/W</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-12</td>
<td>Reserved</td>
<td>R</td>
<td>All reserved bits are always read as 0.</td>
</tr>
<tr>
<td>11-8</td>
<td>Bus Divisor and Voltage ID Control (BVC)</td>
<td>R/W</td>
<td>The bit fields within the BVC bytes allow software to change the processor bus divisor and core voltage.</td>
</tr>
<tr>
<td>7-0</td>
<td>Reserved</td>
<td>R</td>
<td>All reserved bits are always read as 0.</td>
</tr>
</tbody>
</table>

Notes:
1. All bits default to 0 when RESET is asserted.

BVC Field

Figure 28 on page 56 shows the format and Table 27 defines the function of each bit of the BVC field located within the 16-byte I/O block.

Note: The EPM Stop Grant state is a low-power, clock-control state entered by writing a non-zero value to the SGTC field for altering the core voltage and frequency settings. System-initiated inquire (snoop) cycles are not supported and must be prevented during EPM Stop Grant clock control state.
Figure 28. Bus Divisor and Voltage ID Control (BVC) Field (Low-Power Model D)

Table 27. Bus Divisor and Voltage ID Control (BVC) Definition (Low-Power Model D)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>R/W</th>
<th>Function¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-12</td>
<td>Stop Grant Time-out Counter (SGTC)</td>
<td>W</td>
<td>Writing a non-zero value to this field causes the processor to enter the EPM Stop Grant state internally. This 20-bit value is multiplied by 4096 to determine the duration of the EPM Stop Grant state, measured in processor bus clocks.</td>
</tr>
<tr>
<td>11</td>
<td>Bus Divisor and VID Change Mode (BVCM)</td>
<td>R/W</td>
<td>This bit controls the mode in which the bus-divisor and the voltage control bits are allowed to change. If BVCM=0, the Bus Divisor and Voltage ID changes take effect only upon entering the EPM Stop Grant state as a result of the SGTC field being programmed. BVCM=1 is reserved.</td>
</tr>
<tr>
<td>10</td>
<td>Voltage ID Control (VIDC)</td>
<td>R/W</td>
<td>This bit controls the mode of Voltage ID control. If VIDC=0, the processor VID[4:0] pins are unchanged upon entering the EPM Stop Grant state. If VIDC=1, the processor VID[4:0] pins are programmed to the VIDO value upon entering the EPM Stop Grant state. BIOS should initialize this bit to 1 during the POST routine.</td>
</tr>
<tr>
<td>9-8</td>
<td>Bus Divisor Control (BDC)</td>
<td>R/W</td>
<td>This 2-bit field controls the mode of bus divisor control. If BDC[1:0]=00b, the BF[2:0] pins are sampled at the falling edge of RESET. If BDC[1:0]=1xb, the IBF[2:0] field is sampled upon entering the EPM Stop Grant state. BDC[1:0]=01b is reserved. BIOS should initialize these bits to 10b during the POST routine.</td>
</tr>
<tr>
<td>7-5</td>
<td>Internal BF Divisor (IBF)</td>
<td>R/W</td>
<td>If BDC[1:0]=1xb, the processor EBF[2:0] field of the PSOR is programmed to the IBF[2:0] value upon entering the EPM Stop Grant state.</td>
</tr>
<tr>
<td>4-0</td>
<td>Voltage ID Output (VIDO)</td>
<td>R/W</td>
<td>This 5-bit value is driven out on the processor VID[4:0] pins upon entering the EPM Stop Grant state if the VIDC bit=1. These bits are initialized to 01010b and driven on the processor VID[4:0] pins at RESET.</td>
</tr>
</tbody>
</table>

Notes:

¹. **All bits default to 0 when RESET is asserted, except the VIDO bits which default to 01010b.**
Embedded AMD Processor Recognition

The CPUID instruction provides a simple way for hardware and software to identify the type of processor and its feature set.

After detecting the processor and its capabilities, software can be accurately tuned to the system for optimal performance and benefit to users.

- For example, game software can test the performance level available from a particular processor by detecting the type or speed of the processor. If the features warrant executing additional capabilities or advanced algorithms, these can be enabled with software.

- Another example involves testing for the presence of 3DNow! or MMX instructions on the processor. If the software finds these features present when it checks the feature bits, it can utilize these more powerful extensions for dramatically better performance on new multimedia software.

See http://www.amd.com/products/cpg/bin for example software and source code to detect processor information.

CPUID Instruction Overview

Software operating at any privilege level can execute the CPUID instruction to identify the processor and its feature set.

In addition, the CPUID instruction implements multiple functions, each providing different information about the processor, including the vendor, model number, revision (stepping), features, cache organization, and processor name.

The multiple-function approach allows the CPUID instruction to return a complete picture about the type of processor and its capabilities—more detailed information than could be returned by a single function. The CPUID instruction provides the flexibility of making only one call to obtain the specific data requested.

The functions are divided into two types: standard functions and extended functions.
- **Standard functions** provide a simple method for software to access information common to all x86 processors.
- **Extended functions** provide information on extensions specific to a vendor’s processor (for example, AMD’s processors).

The flexibility of the CPUID instruction allows for the addition of new CPUID functions in future generations of processors. “Appendix A” on page 71 contains a detailed description of the CPUID instruction.

Testing for the CPUID Instruction

Beginning with the AMD-K6E processor Model 7, all AMD processors support the CPUID instruction. However, it is still recommended that software verify that the CPUID instruction is supported. To use the CPUID instruction, software must first determine if the processor supports the CPUID instruction. CPUID support is determined in one of the following ways:

- Execute the CPUID instruction and check whether an illegal instruction exception occurs. If an exception occurs, the processor does not have CPUID support.
- Check if the ID bit (bit 21) of the EFLAGS register is writable. If the bit is writable (that is, it can be modified), the CPUID instruction is supported.

The operating system (OS) environment determines which approach is more appropriate. These techniques are described in the following sections.

Illegal Instruction Exception Method

This technique requires a way for a user program to detect and handle illegal instruction exceptions. Where such capabilities are present, this method represents a reliable way of detecting support for the CPUID instruction. The CPUID sample code described on page 67 uses this approach.

EFLAGS ID-Bit Method

This technique retrieves the contents of EFLAGS using the PUSHFD instruction, toggles the ID bit, and uses the POPFD instruction to write the modified value of the ID bit into the EFLAGS register. It then retrieves the contents of EFLAGS using a second PUSHFD instruction and checks whether the value of the ID bit differs from the original value.
If the value has changed, the CPUID instruction is available for identifying the processor and its features. The following code sample demonstrates the way a program uses the PUSHFD and POPFD instructions to test the ID bit.

```
pushfd ; Save EFLAGS to stack
pop eax ; Store EFLAGS in EAX
mov ebx, eax ; Save in EBX for testing later
xor eax, 00200000h ; Switch bit 21
push eax ; Copy changed value to stack
popfd ; Save changed EAX to EFLAGS
pushfd ; Push EFLAGS to top of stack
pop eax ; Store EFLAGS in EAX
cmp eax, ebx ; See if bit 21 has changed
jz NO_CPUID ; If no change, no CPUID
```

A potential problem with this approach is that an interrupt or a trap (such as a debug trap) can occur between the POPFD and the following PUSHFD, and that the interrupt or trap handler code destroys the value of the ID bit. Where possible, the above code should be preceded by a CLI instruction and followed by an STI instruction, which ensures that no interrupts occur between the POPFD and the PUSHFD. However, traps can still occur, even if the code is preceded by a CLI instruction and followed by an STI instruction.

Using CPUID Functions

When software uses the CPUID instruction to identify a processor, it is important that it uses the instruction appropriately. The instruction has been defined to make it easy to identify the type and features of x86 processors manufactured by many different vendors.

The standard functions (EAX=0 and EAX=1) are the same for all processors. Having standard functions simplifies software’s task of testing for and implementing features common to x86 processors. Software can test for these features and, as new x86 processors are released, benefit from these capabilities immediately.

Extended functions are specific to a vendor’s processor. These functions provide additional information about AMD processors that software can use to identify enhanced features and functions. To test for extended functions, software checks
for a value of at least 8000_0001h in the EAX register returned by function 8000_0000h.

Within AMD’s family of processors, different members can execute a different number of functions. Table 28 summarizes the CPUID functions currently implemented on AMD processors.

Table 28. CPUID Functions¹ in AMD-K6™ Processors²

<table>
<thead>
<tr>
<th>Standard Function</th>
<th>Extended Function</th>
<th>Description</th>
<th>AMD-K6™-E Processor (Model 7)</th>
<th>AMD-K6™-2 and AMD-K6™-2E Processors (Model 8)</th>
<th>AMD-K6™-III Processor (Model 9)</th>
<th>AMD-K6™-2E+ and AMD-K6™-IIIIE+ Processors (Model D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>Vendor String and Largest Standard Function Value</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>Processor Signature and Standard Feature Bits</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>– 8000_0000h</td>
<td>Largest Extended Function Value</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0001h</td>
<td>Extended Processor Signature and Extended Feature Bits</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0002h</td>
<td>Processor Name</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0003h</td>
<td>Processor Name</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0004h</td>
<td>Processor Name</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0005h</td>
<td>L1 TLB³ Cache Information</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0006h</td>
<td>L2 TLB³ Cache Information</td>
<td>–</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>– 8000_0007h</td>
<td>AMD PowerNow! Technology</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>X⁴</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. “Appendix A” on page 71 contains detailed descriptions of the functions.
2. Future versions of these processors may implement additional functions.
3. TLB = translation lookaside buffer
4. Low-power versions only

Identifying the Processor’s Vendor

Software must execute the standard function EAX=0. The CPUID instruction returns a 12-character string that identifies the processor’s vendor. The instruction also returns the largest standard function input value defined for the CPUID instruction on the processor.

For AMD processors, function 0 returns a vendor string of “AuthenticAMD”. This string informs the software to follow
AMD’s definition for subsequent CPUID functions and the registers returned for those functions.

Once the software identifies the processor’s vendor, it knows the definition for all the functions supplied by the CPUID instruction. By using these functions, the software obtains the processor information needed to properly tune its functionality to the capabilities of the processor.

Testing For Extended Functions

Software must test for extended functions with function 8000_0000h. The EAX register returns the largest extended function input value defined for the CPUID instruction on the processor. If this value is at least 8000_0001h, extended functions are supported.

With one exception, the AMD extended feature flags include all the information provided in the standard feature flags as well as indicators for the additional AMD processor-specific feature enhancements. The duplication of standard feature bits within the extended feature bits can minimize the number of function calls required by software. The exception is bit 11, which indicates that the SYSENTER and SYSEXIT instructions are supported in the standard features and that the SYSCALL and SYSRET instructions are supported in the extended features.

Determining the Processor Signature

Standard function 1 (EAX=1) of the CPUID instruction returns the standard processor signature and feature bits. The standard processor signature is returned in the EAX register and provides information regarding the specific revision (stepping) and model of the processor and the instruction family level supported by the processor. The revision level can be used to determine if the processor supports specific features. However, it is not recommended that the revision level be used in this manner unless this information is not available through the standard or extended feature bits.
All AMD-K6 processor models belong to instruction family 5 (as returned in EAX by function 1). All AMD Athlon™ processor models belong to instruction family 6 (as returned in EAX by function 1).

Figure 29 shows the contents of the EAX register obtained by function 1. Table 29 summarizes the specific processor signature values returned for AMD processors.

![Figure 29. Contents of EAX Register Returned by Function 1](image)

Table 29. Processor Signatures for AMD-K6™ Processors

<table>
<thead>
<tr>
<th>Processor</th>
<th>Instruction Family</th>
<th>Model</th>
<th>Stepping ID<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD-K6E Processor (Model 7)</td>
<td>0101b (5h)</td>
<td>0111b (7h)</td>
<td>xxxx</td>
</tr>
<tr>
<td>AMD-K6-2 Processor (Model 8)</td>
<td>0101b (5h)</td>
<td>1000b (8h)</td>
<td>xxxx</td>
</tr>
<tr>
<td>AMD-K6-2E Processor (Model 8)</td>
<td>0101b (5h)</td>
<td>1101b (Dh)</td>
<td>xxxx</td>
</tr>
<tr>
<td>AMD-K6-III Processor (Model 9)</td>
<td>0101b (5h)</td>
<td>1001b (9h)</td>
<td>xxxx</td>
</tr>
</tbody>
</table>

Notes:
1. Contact your AMD representative for the latest stepping information. Refer to Table 1 on page 2 for the range of allowable stepping IDs associated with each model number.
Identifying Supported Features

The feature bits are returned in the EDX register for two CPUID functions—standard function 1 and extended function 8000_0001h. Each bit corresponds to a specific feature and indicates if that feature is present on the processor. Table 30 summarizes the standard and extended feature bits.

Table 30. Standard and Extended Feature Bits

<table>
<thead>
<tr>
<th>Bit</th>
<th>Feature</th>
<th>Description</th>
<th>Standard 2</th>
<th>Extended 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Floating-Point Unit</td>
<td>A floating-point unit is available.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Virtual Mode Extensions</td>
<td>Virtual mode extensions are available.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Debugging Extensions</td>
<td>I/O breakpoint debug extensions are supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>PSE (Page Size Extensions)</td>
<td>4-Mbyte pages are supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Time Stamp Counter (with RDTSC and CR4 disable bit)</td>
<td>A time stamp counter is available in the processor, and the RDTSC instruction is supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>K86™ Family of Processors’ Model-Specific Registers (with RDMSR and WRMSR)</td>
<td>The K86 model-specific registers are available in the processor, and the RDMSR and WRMSR instructions are supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>PAE (Page Address Extensions)</td>
<td>Page address extensions are supported using an 8-byte directory entry.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>MCE (Machine Check Exception)</td>
<td>The machine check exception is supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>CMPXCHG8B Instruction</td>
<td>The CMPXCHG8B instruction is supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>APIC</td>
<td>A local APIC unit is available.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Reserved on all AMD processors</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>SYSENTER/SYSEXIT Instructions</td>
<td>The SYSENTER and SYSEXIT instructions are supported.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SYSCALL and SYSRET Instructions</td>
<td>The SYSCALL and SYSRET instructions and associated extensions are supported.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>MTRR (Memory Type Range Registers)</td>
<td>Memory type range registers are available.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Global Paging Extension</td>
<td>Global paging extensions are available.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>MCA (Machine Check Architecture)</td>
<td>Machine check architecture is supported</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Conditional Move Instructions</td>
<td>The conditional move instructions CMOV, FCMOV, and FCOMI are supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>PAT (Page Attribute Table)</td>
<td>The Page attribute tables are supported.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>PSE-36 (Page Size Extension)</td>
<td>Page size extensions for 36-bit addresses are supported using a 4-byte directory entry.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18–21</td>
<td>Reserved on all AMD processors</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>AMD Multimedia Instruction Extensions</td>
<td>AMD additions to the original MMX™ instruction set are supported.</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Before using any of the enhanced features added to the latest generation of processors, software should test each feature bit returned by functions 1 and 8000_0001h to identify the capabilities available on the processor. For example, software must test feature bit 23 to determine if the processor executes the MMX technology instructions. Attempting to execute an unavailable feature can cause errors and exceptions.

Bit 31, as returned by extended function 8000_0001h, designates the presence of 3DNow! technology. Other processor vendors have adopted this technology, so bit 31 is now considered an open standard. “Appendix A” on page 71, and “Appendix B” on page 81 contain details on bit values.

Determining Instruction Set Support

It is preferable to use CPUID feature flags as much as possible, rather than deriving capabilities from vendor specifiers combined with CPUID model numbers.

The AMD-K6-2E+ and AMD-K6-IIIIE+ processors add a new set of powerful extensions to the x86 instruction set—3DNow! extensions. See the *AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets Manual*, order# 22466 for more information about these new instructions.
Detection Algorithm for Determining Instruction Set Support

To simplify the detection of the new instructions and the original 3DNow! and MMX instructions, use the following algorithm. A code sample using the CPUID instruction to identify the processor and its features is available from AMD’s website at http://www.amd.com/products/cpg/bin. There are other ways to implement detection besides the way shown in the sample.

CPUID Test
1. Establish that the processor has support for CPUID. See “Testing for the CPUID Instruction” on page 58.

Standard Function Test
2. Execute CPUID function 0, which returns the processor vendor string and the highest standard function supported. Save the vendor string for a later comparison. (See step 9.)
3. If step 2 indicates that the highest standard function is at least 1, execute CPUID function 1, which returns the standard feature flags in the EDX register.

MMX™ Test
4. If bit 23 of the standard feature flags is set to 1, MMX technology is supported. MMX instruction support is the basic minimum processor feature required to support other instruction extensions.

Optional SSE Test
5. Optionally, if bit 25 of the standard feature flags is set, the processor has streaming single instruction multiple data (SIMD) extensions (SSE) capabilities. Further qualification of SSE is done by checking for OS support. SSE support might be present in the processor, but not usable due to a lack of OS support for the additional architected registers.

Extended Functions Test
6. Execute CPUID extended function 8000_0000h. This function returns the highest extended function supported in EAX. If EAX=0, there is no support for extended functions.
7. If the highest extended function supported is at least 8000_0001h, execute CPUID function 8000_0001h. This function returns the extended feature flags in EDX.

3DNow!™ Test
8. If bit 31 of the extended feature flags is set to 1, the 3DNow! instructions are supported.

Vendor Check
9. If the previously saved vendor string (see step 2) contains “AuthenticAMD”, continue on to the next step.
3DNow! Extensions Test

10. If bit 30 of the extended feature flags is set to 1, the additions to the 3DNow! instruction set are supported.

AMD Multimedia Instruction Extensions Test

11. If bit 22 of the extended feature flags is set to 1, the new multimedia enhancement instructions that augment the MMX instruction set are supported.

AMD Processor Signature (Extended Function)

Extended function 8000_0001h returns the embedded AMD processor signature. The signature is returned in the EAX register and provides generation, model, and stepping information for AMD processors. Figure 30 shows the contents returned in the EAX register.

![Figure 30. Contents of EAX Register Returned by Extended Function 8000_0001h](image)

Displaying the Processor’s Name

Extended functions 8000_0002h, 8000_0003h, and 8000_0004h return an ASCII string containing the name of the processor (also called the boot string or name string). These functions eliminate the need for software to search for the processor name in a lookup table, a process requiring a large block of memory and frequent updates. Instead, software can simply call these three functions to obtain the name string (48 ASCII characters in little-endian format) and display it on the screen.

Although the name string can be up to 48 characters in length, shorter names have the remaining byte locations filled with the ASCII NULL character (00h). To simplify the display routines and avoid using screen space, software only needs to display characters until a NULL character is detected.
Note: Extended functions 8000_0002h, 8000_0003h, and 8000_0004h return an incorrect name string for the AMD-K6-2E+ and AMD-K6-IIIE+ processors (Model D). See “Functions 8000_0002h, 8000_0003h, and 8000_0004h — Processor Name String” on page 77 for more information.

Displaying Cache Information

Extended functions 8000_0005h and 8000_0006h provide cache information for the processor. Some diagnostic software displays information about the system and the processor’s configuration. It is common for this type of software to provide cache size and organization information.

Functions 8000_0005h and 8000_0006h provide a simple way for software to obtain information about the on-chip caches and translation lookaside buffer (TLB) structures. The size and organization information is returned in the registers as described in “Appendix A” on page 71. Software can simply display these values, eliminating the need for large pieces of code to test the memory structures.

Determining AMD PowerNow!™ Technology Information

Extended function 8000_0007h provides information regarding the processor’s support for AMD PowerNow! and its enhanced power management (EPM) features. Based on the status of the EPM flags, software can determine if the processor supports programmable bus frequency control and programmable voltage ID control. A ‘1’ for each bit indicates that the feature is supported; however, the feature must be enabled by software. See “Function 8000_0007h — AMD PowerNow!™ Technology Information” on page 79 for more detailed bit descriptions.

Sample Code

A code sample using the CPUID instruction to identify the processor and its features is available from AMD’s website at http://www.amd.com/products/cpg/bin.
New AMD-K6™ Processor Instructions

All models/steppings of the AMD-K6 processor family implement the following new instruction set:

- MMXTM Instructions—57 new instructions for multimedia software. See the AMD-K6™ MMXTM Enhanced Processor Multimedia Technology Manual, order# 20726 for more information.

All models/steppings of the AMD-K6-2, AMD-K6-2E, AMD-K6-2E+, AMD-K6-III, and the AMD-K6-IIIE+ processors implement the following additional instructions:

- 3DNow!™ Instructions—21 new instructions for multimedia software. See the 3DNow!™ Technology Manual, order# 21928 for more information.

- SYSCALL and SYSRET—See the SYSCALL and SYSRET Instruction Specification Application Note, order# 21086 for more information. (Note that Model 7 processors do not support these instructions.)

The AMD-K6-2E+ Model D/[7:4] and the AMD-K6-IIIE+ Model D/[3:0] processors implement the following additional instructions:

- 3DNow!™ Instruction Extensions—5 new instructions for multimedia software. See the AMD Extensions to the 3DNow!™ and MMXTM Instruction Sets Manual, order# 22466 for more information.
Additional Considerations

Software Timing Dependencies Relative to Memory Controller Setup

Processors in the K86 family differ from other processors with regards to instruction latencies and the order or priority of processor bus cycles. Timing-dependent software that relies on the specific latencies of other processors should be re-tested for proper operation with the K86 processor. In addition, re-testing should be performed on components with variable timing (such as memory modules, oscillators, and timers).

Particular attention should be paid to memory-setup subroutines that determine the type of DRAM in the system. Some chipsets may not tolerate a DRAM mode change (such as, EDO to SDRAM) on the same clock as a DRAM refresh cycle. For example some chipsets do not tolerate having its memory refresh enabled prior to changing memory mode types. Refresh should only be enabled after the memory type has been determined.

Note: The BIOS for the K86 family of processors should enable the write allocate mechanisms only after performing any memory sizing or typing algorithms.

Pipelining Support

All production models and steppings of the AMD-K6 processor support the WAELIM form of write allocate, which is the only form of write allocate that should be enabled. AMD does not recommend enabling the obsolete form of write allocate (WCDE) because system performance can be degraded by doing so.

Early implementations of the AMD-K6 processor did not support the WHCR register and therefore did not support the WAELIM form of write allocate. WCDE was the only form of write allocate supported, which required the chipset to assert KEN# for cacheable memory write cycles. Because KEN# is sampled by the processor on the clock edge on which the first BRDY# or NA# is sampled asserted, some chipsets that supported the WCDE form of write allocate did not assert NA# during write cycles in order to prevent the processor from...
sampling KEN# before it was valid (in this case, BRDY# was used by the processor to sample KEN#). If NA# is not asserted during memory write cycles, then the processor does not fully take advantage of the potential performance gains that bus pipelining can achieve.

For proper functionality, always program the WCDE bit to 0 for models 7 and 8/[7:0]. Models 8/[F:8], 9, and D do not support the WCDE bit.

Read-Only Memory

The processor’s caches must be flushed prior to defining any area of memory as cacheable and read-only. (The BIOS is typically “shadowed” into main memory and defined as cacheable and read-only.) If the caches are not flushed, then a line that resides in the processor’s cache that falls within a read-only area of memory can be written to, which would place the cache line in the modified state. If this modified line is subsequently replaced and written back to memory, then the system may hang (or other unpredictable effects may occur) because the writeback is directed to an area of memory defined as read-only by the chipset.
Appendix A

CPUID

<table>
<thead>
<tr>
<th>mnemonic</th>
<th>opcode</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUID</td>
<td>0F A2h</td>
<td>Identify the processor and its feature set</td>
</tr>
</tbody>
</table>

Privilege: none
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: none
Exceptions Generated: none

The CPUID instruction is an application-level instruction that software executes to identify the processor and its feature set. This instruction offers multiple functions, each providing a different set of information about the processor. The CPUID instruction can be executed from any privilege level. Software can use the information returned by this instruction to tune its functionality for the specific processor and its features.

Beginning with the AMD-K6E processor Model 7, all AMD processors support the CPUID instruction. However, it is still recommended that software verify that the CPUID instruction is supported. See “Testing for the CPUID Instruction” on page 58 for more information.

The CPUID instruction supports multiple functions. The information associated with each function is obtained by executing the CPUID instruction with the function number in the EAX register. Functions are divided into two types: standard functions and extended functions. Standard functions are found in the low function space, 0000_0000h–7FFF_FFFFh. In general, all x86 processors have the same standard function definitions.

Extended functions are defined specifically for processors supplied by the vendor listed in the vendor identification string. Extended functions are found in the high function space, 8000_0000h–8FFF_FFFFh. Because not all vendors have defined extended functions, software must test for their presence on the processor.
Standard Functions

Function 0 — Largest Standard Function Input Value and Vendor Identification String

Input: \(EAX = 0 \)

Output: \(EAX = \) Largest function input value recognized by the CPUID instruction
\(\text{EBX, EDX, ECX} = \) Vendor identification string

This is a standard function found in all processors implementing the CPUID instruction. It returns two values. The first value is returned in the EAX register and indicates the largest standard function value recognized by the processor. The second value is the vendor identification string. This 12-character ASCII string is returned in the EBX, EDX, and ECX registers in little-endian format. AMD processors return a vendor identification string of “AuthenticAMD” as follows:

<table>
<thead>
<tr>
<th>EBX</th>
<th>EDX</th>
<th>ECX</th>
</tr>
</thead>
<tbody>
<tr>
<td>h t u A i t n e D M A c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>74</td>
<td>75</td>
</tr>
</tbody>
</table>

Software uses the vendor identification string as follows:

- To identify the processor as an AMD processor
- To apply AMD’s definition of the CPUID instruction for all additional function calls

Function 1 — Processor Signature and Standard Feature Flags

Input: \(EAX = 1 \)

Output: \(EAX = \) Processor Signature
\(\text{EBX} = \) Reserved
\(\text{ECX} = \) Reserved
\(\text{EDX} = \) Standard Feature Flags

Function 1 returns two values—the Processor Signature and the Standard Feature Flags. The processor signature is returned in the EAX register and identifies the specific processor by providing information on its type—instruction family, model, and revision (stepping). The information is formatted as follows:

- \(\text{EAX}[3–0] \) Stepping ID
- \(\text{EAX}[7–4] \) Model
- \(\text{EAX}[11–8] \) Instruction Family
- \(\text{EAX}[31–12] \) Reserved
The standard feature flags are returned in the EDX register and indicate the presence of specific features. In most cases, a “1” indicates the feature is present, and a “0” indicates the feature is not present. Table 31 on page 74 contains a list of the currently defined standard feature flags for the AMD-K6 family of processors. Reserved bits will be used for new features as they are added.
Table 31. Standard Feature Flag Descriptions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Feature</th>
<th>AMD-K6E Processor (Model 7)</th>
<th>AMD-K6-2 & AMD-K6-2E Processors (Model 8)</th>
<th>AMD-K6-III Processor (Model 9)</th>
<th>AMD-K6-2E+ and AMD-K6-IIIIE+ Processors (Model D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Floating-Point Unit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Virtual Mode Extensions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Debugging Extensions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Page Size Extensions (4-Mbyte pages)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Time Stamp Counter (with RDTSC and CR4 disable bit)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>K86 Family of Processors’ Model-Specific Registers (with RDMSR and WRMSR)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>PAE (Page Address Extensions)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Machine Check Exception</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>CMPXCHG8B Instruction</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>APIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Reserved on all AMD processors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>SYSENTER/SYSEXIT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Memory Type Range Registers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Global Paging Extension</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Machine Check Architecture</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Conditional Move Instruction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>PAT (Page Attribute Table)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>PSE-36 (Page Size Extensions)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18–21</td>
<td>Reserved on all AMD processors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>AMD Multimedia Instruction Extensions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>MMX Instructions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>FXSAVE/FXRSTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Streaming SIMD Extensions (SSE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26–29</td>
<td>Reserved on all AMD processors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>AMD 3DNow! Instruction Extensions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>AMD 3DNow! Instructions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
1. Bit definitions: 0 = No Support, 1 = Support.
Extended Functions

Function 8000_0000h — Largest Extended Function Input Value

Input: \(EAX = 8000_0000h \)

Output: \(EAX = \text{Largest function input value recognized by the CPUID instruction} \)
\(\text{EBX} = \text{Reserved} \)
\(\text{ECX} = \text{Reserved} \)
\(\text{EDX} = \text{Reserved} \)

Function 8000_0000h returns a value in the EAX register that indicates the largest extended function value recognized by the processor.

Function 8000_0001h — AMD Processor Signature and Extended Feature Flags

Input: \(EAX = 8000_0001h \)

Output: \(EAX = \text{AMD Processor Signature} \)
\(\text{EBX} = \text{Reserved} \)
\(\text{ECX} = \text{Reserved} \)
\(\text{EDX} = \text{Extended Feature Flags} \)

Function 8000_0001h returns two values—the AMD Processor Signature and the Extended Feature Flags. The AMD processor signature is returned in the EAX register and identifies the specific processor by providing information regarding its type—generation/family, model, and revision (stepping). The information is formatted as follows:

- \(\text{EAX}[3–0] \) Stepping ID
- \(\text{EAX}[7–4] \) Model
- \(\text{EAX}[11–8] \) Generation/Family
- \(\text{EAX}[31–12] \) Reserved

The extended feature flags are returned in the EDX register and indicate the presence of specific features found in AMD processors. In most cases, a ‘1’ indicates the feature is present, and a ‘0’ indicates the feature is not present. Table 32 on page 76 contains a list of the currently defined extended feature flags for the AMD-K6 family of processors. Reserved bits will be used for new features as they are added.
Table 32. Extended Feature Flag Descriptions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Feature¹</th>
<th>AMD-K6E Processor (Model 7)</th>
<th>AMD-K6-2 and AMD-K6-2E Processors (Model 8)</th>
<th>AMD-K6-III Processor (Model 9)</th>
<th>AMD-K6-2E+ and AMD-K6-IIIIE+ Processors (Model D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Floating-Point Unit</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Virtual Mode Extensions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Debugging Extensions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Page Size Extensions (4-Mbyte Pages)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Time Stamp Counter (with RDTSC and CR4 disable bit)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>K86 Family of Processors’ Model-Specific Registers (with RDMSR and WRMSR)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>PAE (Page Address Extensions)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Machine Check Exception</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>CMPXCHG8B Instruction</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>APIC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>Reserved on all AMD processors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>SYSCALL and SYSRET Instructions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Memory Type Range Registers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Global Paging Extension</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Machine Check Architecture</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Conditional Move Instruction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>PAT (Page Attribute Table)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>PSE-36 (Page Size Extensions)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18–21</td>
<td>Reserved on all AMD processors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>AMD Multimedia Instruction Extensions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>MMX Instructions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>FXSAVE/FXRSTOR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Streaming SIMD Extensions (SSE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26–29</td>
<td>Reserved on all AMD processors</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>AMD 3DNow! Instruction Extensions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>3DNow! Instructions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
1. Bit definitions: 0 = No Support, 1 = Support
Functions 8000_0002h, 8000_0003h, and 8000_0004h — Processor Name String

Input: EAX = 8000_0002h, 8000_0003h, or 8000_0004h

Output:
- EAX = Processor Name String
- EBX = Processor Name String
- ECX = Processor Name String
- EDX = Processor Name String

Functions 8000_0002h, 8000_0003h, and 8000_0004h each return part of the processor name string in the EAX, EBX, ECX, and EDX registers. These three functions use the four registers to return an ASCII string of up to 48 characters in little endian format. For example, function 8000_0002h returns the first 16 characters of the processor name. The first character resides in the least significant byte of EAX, and the last character (of this group of 16) resides in the most significant byte of EDX. The NULL character (ASCII 00h) is used to indicate the end of the processor name string. This feature is useful for processor names that require fewer than 48 characters.

Note: Extended functions 8000_0002h, 8000_0003h, and 8000_0004h return an incorrect name string for the AMD-K6-2E+ and AMD-K6-IIIE+ processors (Model D). The returned name string should be AMD-K6™-2+ for the AMD-K6-2E+ processor and AMD-K6™-III+ for the AMD-K6-IIIE+ processor. However, the actual value returned for either processor is AMD-K6™-III. The AMD CPUID utility v2.07 should be used to display the name string specified for AMD-K6E, Model D processors. This utility can be obtained from http://www.amd.com/products/cpg/bin/amdcpuid.exe. Feature bits returned by the standard and extended function calls of the CPUID instruction should still be used to determine the features and capabilities supported by the processor in use.
Function 8000_0005h – L1 Cache Information

Input: EAX = 8000_0005h

Output: EAX = Reserved
EBX = TLB Information
ECX = L1 Data Cache Information
EDX = L1 Instruction Cache Information

Function 8000_0005h returns information about the processor’s on-chip L1 caches and associated TLBs. Tables 33, 34, and 35 provide the format for the information returned by the 8000_0005h function.

Table 33. EBX Format Returned by Function 8000_0005h

<table>
<thead>
<tr>
<th>Data TLB</th>
<th>Instruction TLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associativity¹</td>
<td># Entries</td>
</tr>
<tr>
<td>EBX</td>
<td>Bits 31–24</td>
</tr>
<tr>
<td></td>
<td>Bits 23–16</td>
</tr>
<tr>
<td></td>
<td>Bits 15–8</td>
</tr>
<tr>
<td></td>
<td>Bits 7–0</td>
</tr>
</tbody>
</table>

Notes:
1. See “Associativity for L1 Caches and L1 TLBs” on page 80 for more information.

Table 34. ECX Format Returned by Function 8000_0005h

<table>
<thead>
<tr>
<th>L1 Data Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Kbytes)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Associativity¹</td>
</tr>
<tr>
<td>Lines per Tag</td>
</tr>
<tr>
<td>Line Size (bytes)</td>
</tr>
<tr>
<td>ECX</td>
</tr>
<tr>
<td>Bits 31–24</td>
</tr>
<tr>
<td>Bits 23–16</td>
</tr>
<tr>
<td>Bits 15–8</td>
</tr>
<tr>
<td>Bits 7–0</td>
</tr>
</tbody>
</table>

Notes:
1. See “Associativity for L1 Caches and L1 TLBs” on page 80 for more information.

Table 35. EDX Format Returned by Function 8000_0005h

<table>
<thead>
<tr>
<th>L1 Instruction Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Kbytes)</td>
</tr>
<tr>
<td>Associativity¹</td>
</tr>
<tr>
<td>Lines per Tag</td>
</tr>
<tr>
<td>Line Size (bytes)</td>
</tr>
<tr>
<td>EDX</td>
</tr>
<tr>
<td>Bits 31–24</td>
</tr>
<tr>
<td>Bits 23–16</td>
</tr>
<tr>
<td>Bits 15–8</td>
</tr>
<tr>
<td>Bits 7–0</td>
</tr>
</tbody>
</table>

Notes:
1. See “Associativity for L1 Caches and L1 TLBs” on page 80 for more information.
Function 8000_0006h — L2 Cache Information

This function is only available on AMD-K6 processors models 9 and D.

Input: $\text{EAX} = 8000_0006h$

Output:
- $\text{EAX} = \text{Reserved}$
- $\text{EBX} = \text{Reserved}$
- $\text{ECX} = \text{L2 Unified Cache Information}$
- $\text{EDX} = \text{Reserved}$

Function 8000_0006h returns information about the processor’s L2 cache. Table 36 provides the format for the information returned by the 8000_0006h function.

Table 36. ECX Format Returned by Function 8000_0006h

| L2 Cache |
|----------|----------|----------|----------|
| Size (Kbytes) | Associativity1 | Lines per Tag | Line Size (bytes) |
| ECX | Bits 31–16 | Bits 15–12 | Bits 11–8 | Bits 7–0 |

Notes:
1. See “Associativity for L2 Cache” on page 80 for more information

Function 8000_0007h — AMD PowerNow!™ Technology Information

The AMD PowerNow! technology function for enhanced power management is available on low-power versions of the AMD-K6-2E+ and AMD-K6-IIIE+ processors, Model D.

Input: $\text{EAX} = 8000_0007h$

Output:
- $\text{EAX} = \text{Reserved}$
- $\text{EBX} = \text{Reserved}$
- $\text{ECX} = \text{Reserved}$
- $\text{EDX} = \text{EPM Flags}$

Function 8000_0007h returns information about the processor’s AMD PowerNow! technology support. Table 37 provides the format for the information returned by the 8000_0007h function.

Table 37. EDX Format Returned by Function 8000_0007h

| AMD PowerNow!™ Technology |
|---------------------------|----------|----------|----------|
| Reserved | Voltage ID Control | Bus Divider Control | Reserved |
| EDX1 | Bits 31–3 | Bit 2 | Bit 1 | Bit 0 |

Notes:
1. A ‘1’ indicates the feature is present, however the feature must still be enabled by software.
Cache Associativity Field Definitions

This section describes the values returned in the associativity fields.

Associativity for L1 Caches and L1 TLBs

The associativity fields for the L1 data cache, L1 instruction cache, L1 data TLB, and L1 instruction TLB are all 8 bits wide. Except for 00h (Reserved) and FFh (Full), the number returned in the associativity field represents the actual number of ways, with a range of 01h through FEh. For example, a returned value of 02h indicates 2-way associativity and a returned value of 04h indicates 4-way associativity.

Associativity for L2 Cache

The associativity field for the L2 cache is 4 bits wide. Table 38 shows the value returned in the associativity field.

<table>
<thead>
<tr>
<th>Bits 15–12</th>
<th>Associativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000b</td>
<td>L2 off</td>
</tr>
<tr>
<td>0001b</td>
<td>Direct-mapped</td>
</tr>
<tr>
<td>0010b</td>
<td>2-way</td>
</tr>
<tr>
<td>0011b</td>
<td>Reserved</td>
</tr>
<tr>
<td>0100b</td>
<td>4-way</td>
</tr>
<tr>
<td>0101b</td>
<td>Reserved</td>
</tr>
<tr>
<td>0110b</td>
<td>8-way</td>
</tr>
<tr>
<td>0111b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1000b</td>
<td>16-way</td>
</tr>
<tr>
<td>1001b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1010b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1011b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1100b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1101b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1110b</td>
<td>Reserved</td>
</tr>
<tr>
<td>1111b</td>
<td>Full</td>
</tr>
</tbody>
</table>
Appendix B

Values Returned by the CPUID Instruction

Table 39 contains all the values returned for AMD-K6 processors by the CPUID instruction.

<table>
<thead>
<tr>
<th>Function</th>
<th>AMD-K6E Processor (Model 7)</th>
<th>AMD-K6-2 & AMD-K6-2E Processors (Model 8)</th>
<th>AMD-K6-III Processor (Model 9)</th>
<th>AMD-K6-2E+ & AMD-K6-IIIIE+ Processors (Model D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function: 0</td>
<td>EAX 0000_0001h</td>
<td>EAX 0000_0001h</td>
<td>EAX 0000_0001h</td>
<td>EAX 0000_0001h</td>
</tr>
<tr>
<td></td>
<td>EBX 6874_7541h</td>
<td>EBX 6874_7541h</td>
<td>EBX 6874_7541h</td>
<td>EBX 6874_7541h</td>
</tr>
<tr>
<td></td>
<td>ECX 444D_4163h</td>
<td>ECX 444D_4163h</td>
<td>ECX 444D_4163h</td>
<td>ECX 444D_4163h</td>
</tr>
<tr>
<td></td>
<td>EDX 6974_6E65h</td>
<td>EDX 6974_6E65h</td>
<td>EDX 6974_6E65h</td>
<td>EDX 6974_6E65h</td>
</tr>
<tr>
<td>Function: 1</td>
<td>EAX 0000_057Xh</td>
<td>EAX 0000_058Xh</td>
<td>EAX 0000_059Xh</td>
<td>EAX 0000_05DXh</td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>ECX Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>EDX 0080_01BFh</td>
<td>EDX 0080_21BFh</td>
<td>EDX 0080_21BFh</td>
<td>EDX 0080_21BFh</td>
</tr>
<tr>
<td>Function: 8000_0000h</td>
<td>EAX 8000_0005h</td>
<td>EAX 8000_0005h</td>
<td>EAX 8000_0006h</td>
<td>EAX 8000_0007h</td>
</tr>
<tr>
<td></td>
<td>EBX Reserved</td>
<td>EBX Reserved</td>
<td>EBX Reserved</td>
<td>EBX Reserved</td>
</tr>
<tr>
<td></td>
<td>ECX Reserved</td>
<td>ECX Reserved</td>
<td>ECX Reserved</td>
<td>ECX Reserved</td>
</tr>
<tr>
<td></td>
<td>EDX Reserved</td>
<td>EDX Reserved</td>
<td>EDX Reserved</td>
<td>EDX Reserved</td>
</tr>
<tr>
<td>Function: 8000_0001h</td>
<td>EAX 0000_067Xh</td>
<td>EAX 0000_068Xh</td>
<td>EAX 0000_069Xh</td>
<td>EAX 0000_06DXh</td>
</tr>
<tr>
<td></td>
<td>EBX Reserved</td>
<td>EBX Reserved</td>
<td>EBX Reserved</td>
<td>EBX Reserved</td>
</tr>
<tr>
<td></td>
<td>ECX Reserved</td>
<td>ECX Reserved</td>
<td>ECX Reserved</td>
<td>ECX Reserved</td>
</tr>
<tr>
<td></td>
<td>EDX 0080_05BFh</td>
<td>EDX 8080_29BFh</td>
<td>EDX 8080_29BFh</td>
<td>EDX C080_29BFh</td>
</tr>
<tr>
<td>Function: 8000_0002h</td>
<td>EAX 2D44_4D41h</td>
<td>EAX 2D44_4D41h</td>
<td>EAX 2D44_4D41h</td>
<td>EAX 2D44_4D41h</td>
</tr>
<tr>
<td></td>
<td>EBX 6D74_364Bh</td>
<td>EBX 7428_364Bh</td>
<td>EBX 7428_364Bh</td>
<td>EBX 7428_364Bh</td>
</tr>
<tr>
<td></td>
<td>ECX 202F_7720h</td>
<td>ECX 3320_296Dh</td>
<td>ECX 3320_296Dh</td>
<td>ECX 492D_296Dh</td>
</tr>
<tr>
<td></td>
<td>EDX 746C_756Dh</td>
<td>EDX 7270_204Ah</td>
<td>EDX 5020_2844h</td>
<td>EDX 6020_4949h</td>
</tr>
</tbody>
</table>
Table 39. CPUID Values Returned by AMD-K6™ Processors (continued)

<table>
<thead>
<tr>
<th>Function Register</th>
<th>AMD-K6E Processor (Model 7)</th>
<th>AMD-K6-2 & AMD-K6-2E Processors (Model 8)</th>
<th>AMD-K6-III Processor (Model 9)</th>
<th>AMD-K6-2E+ & AMD-K6-IIIIE+ Processors (Model D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function: 8000_0004h</td>
<td>EAX: 0000_0073h, EBX: 0000_0000h, ECX: 0000_0000h, EDX: 0000_0000h</td>
<td>EAX: 0000_0000h, EBX: 0000_0000h, ECX: 0000_0000h, EDX: 0000_0000h</td>
<td>EAX: 0000_0000h, EBX: 0000_0000h, ECX: 0000_0000h, EDX: 0000_0000h</td>
<td>EAX: 0000_0000h, EBX: 0000_0000h, ECX: 0000_0000h, EDX: 0000_0000h</td>
</tr>
</tbody>
</table>

Notes:

1. Low-power versions only. Reserved on standard-power version.
2. Extended functions 8000_0002h, 8000_0003h, and 8000_0004h each return part of the processor name string. Some AMD-K6-2E processors may have the following name string: function 8000_0002h, ECX = 322D_296Dh and EDX = 6F72_5020h, and function 8000_0003h, EAX = 7373_6563h and EBX = 0000_726Fh.
3. Extended functions 8000_0002h, 8000_0003h, and 8000_0004h each return part of the processor name string. Some AMD-K6-IIIIE+ processors may have the following name string: function 8000_0002h, ECX = 492D_296Dh and EDX = 5020_4949h, and function 8000_0003h, EAX = 6563_6F72h and EBX = 726F_7373h.
4. Extended function 8000_0006h returns the processor L2 cache information. For the AMD-K6-2E+ processor Model D, ECX = 0080_4220h. For the AMD-K6-IIIIE+ processor Model D, ECX = 0100_4220h.
Embedded AMD-K6™ Processors BIOS Design Guide

Index

A
Address Generation ... 31
AMD PowerNow!™ Technology determining information ... 67
enabling EPM features ... 54
enhanced power management register (EPMR) ... 54
EPM 16-byte I/O block ... 55
EPM stop grant clock control state ... 55
AMD Processor Signature ... 75
AMD-K6™ Processor Family
features (table) ... 2
model-specific register (MSR) differences (table) ... 14–15
AMD-K6™-2 Processor ... 3
model-specific registers supported (table) ... 17, 23
AMD-K6™-2E Embedded Processor ... 4
model-specific registers supported (table) ... 23
AMD-K6™-2E+ Embedded Processor ... 4
model-specific registers supported (table) ... 45
AMD-K6™E Embedded Processor ... 3
model-specific registers supported (table) ... 17
AMD-K6™-III Processor ... 5
model-specific registers supported (table) ... 38
AMD-K6™-III+ Embedded Processor ... 5
model-specific registers supported (table) ... 45
Associativity
field definitions ... 80
L1 caches and L1 TLBs ... 80
L2 cache ... 80
L2 cache values (table) ... 80
AuthenticAMD ... 60, 65, 72

B
BDC Field ... 56
BF Field ... 34
BF Signals ... 24
BIOS Considerations ... 6
BIOS boot strings ... 66
cache invalidation ... 19
cache testing ... 7
CPU speed detection ... 6
CPUID instruction ... 66
displaying processor name ... 66
EFER recommended setting ... 26
model-specific registers (MSRs) ... 6
shadowed ... 70
SMM issues ... 7
volted power control ... 56
write allocate limit ... 20
write allocate mechanisms ... 69
BF Bit ... 10
BRDY# Signal ... 69
Built-In Self-Test (BIST) ... 13
Bus Divisor and VID Change Mode Bit ... 56
Bus Divisor and Voltage ID Control Bit ... 55
Bus Divisor Control Field ... 56
Bus Frequency ... 34
BVC Field ... 55
BVCM Bit ... 56

C
Cache
associativity ... 80
associativity values for L2 cache (table) ... 80
displaying information ... 67
L2 tag writing ... 43, 53
testing ... 7
Cache Inhibit Bit ... 16
CD Bit ... 9
CI Bit ... 16
CLI Instruction ... 59
CMOV Instruction ... 63
CMPPCHG8B Instruction ... 63
CPUID Instruction ... 2, 6, 65, 71
EFLAGS ID-bit test ... 58
flow chart (figure) ... 12
functions ... 59
functions in embedded AMD processors (table) ... 60
identification algorithms ... 11
illegal instruction exception test ... 58
overview ... 57
sample code ... 67
test ... 65
testing ... 58
values returned (table) ... 81
CR0 Register ... 9
CR4 Register ... 16

E
EAS Register

time stamp counter value ... 16
EAX Register

BIST ... 10
extended function 8000_0001h (figure) ... 62
function 1 (figure) ... 62
L2 tag information ... 43, 52
EBF Field ... 47
EBX Register
function 8000_0005h (table) ... 78
ECX Register ... 16
function 8000_0005h (table) ... 78
function 8000_0006h (table) ... 78
MSR selection ... 17
EDX Register
cache access ... 40
extended feature flags ... 40
function 8000_0005h (table) ... 78
function 8000_0007h (table) ... 79
ignored fields during L2 tag access ... 42
L2 tag or data location ... 41, 50
standard feature flags ... 73
time stamp counter value ... 16
Effective Bus Frequency Divisor Field ... 47
EFLAGS Register ... 58
EIP Address ... 22
EN Bit ... 54
Enable AMD PowerNow! Technology Management Bit ... 54
Enhanced Power Management determining information ... 67
enabling EPM features ... 54
Enhanced Power Management Register (EPMR) ... 54
EPM 16-Byte I/O Block ... 55
EPM Start Grant Clock Control State ... 55
EWBEC settings (table) ... 26
model [F:8] ... 24
models 7 and 8[7:0] ... 18
models 9 and 10 ... 39
Extended Features
flag descriptions (table) ... 76
standard and extended feature bits (table) ... 63
Extended Functions
testing ... 75
I/O Trap Dword configuration at offset FFA4h (table)..13
differences in AMD-K6™ processors .. 13
IBF Field .. 56
ID Bit ... 58
INIT Signal .. 8–9
Inquire Cycles that are not supported during EPM stop grant state.55
Instructions 3DNow! extensions test .. 66
3DNow! test .. 65
CLI .. 59
CPUID .. 2
CPUID test ... 65
determining supported .. 64
extended functions test ... 65
family .. 62, 72
illegal exceptions ... 58
latencies .. 69
MMX test ... 65
new ... 68
PUSHFD .. 58
RDRMSR .. 14
RDTSCK .. 16
SSE test .. 65
standard function test ... 65
STI .. 59
SYSCALL .. 15
SYSENTER .. 16
SYSEXIT .. 61
SYSRET ... 15, 22
trapped I/O .. 13
vendor check .. 65
WBINVD ... 19
WRMSR ... 14
Internal BF Divisor Field .. 56
I/OBASE Field .. 54

K
KEN# Signal .. 69

L
L1 Cache .. 78
L2 Cache .. 79
associativity values (table) ... 80
data in EAX (figure) .. 42, 51
organization (figure) .. 40, 48
sector and line organization (figure) ... 41, 49
tag information in EAX .. 43, 52
tag or data location in EDX ... 41, 50
tag writing .. 43, 53
Level-2 Cache Array Access Register (L2AAR) model 9 .. 40
model D .. 48
Linear Page Address Field .. 36
LINPAGE Field .. 36
LRU Byte (figure) .. 43, 53

M
Machine Check Exception (MCE) Bit .. 16
Machine-Check Address Register (MCAR) .. 16
Machine-Check Type Register (MCTR) ... 16
Memory
- DRAM mode changes .. 69
- range restrictions .. 32
- refresh enabling .. 69
- setup subroutines .. 69
- type ... 30–31
- uncacheable (UC) .. 30
- valid masks and range sizes (table) ... 32
- write-combining (WC) .. 30–31
Memory Type Range Registers (MTRRs) ... 30
Model 9.. 17
Model 8 [7:0] .. 17
Model 8 [F:8] ... 23
Model 9.. 38
Model D .. 45
Model-Specific Registers (MSRs) ... 6, 14
- AMD-K6™ family MSR differences (table) .. 14–15
- AMD-K6™-2 processor .. 17
- AMD-K6™-2E processor ... 23
- AMD-K6™-2E+ processor .. 45
- AMD-K6™-E processor .. 17
- AMD-K6™-III processor .. 38
- AMD-K6™-IIIIE+ processor ... 45
- enhanced power management register (EPMR) 54
- extended feature enable register (EFER) .. 18, 24, 39
- level-2 cache array access register (L2AAR) 40, 48
- machine-check address register (MCAR) .. 16
- machine-check type register (MCTR) .. 16
- model 7 .. 17
- model 8 [7:0] .. 17
- model 8 [F:8] ... 23
- model 9 .. 38
- model D .. 45
- page flush/validate register (PFIR) .. 36
- processor state observability register (PSOR) 34, 40, 46
standard .. 16
SYSCALL/SYSRET target address register (STAR) 16
test register 12 (TR12) ... 16
time stamp counter (TSC) .. 16
UC/WC cachability control register (UCCCR) .. 30
write handling control register (WHCR) ... 19, 27
MSR .. 6
MTRR0 .. 30
MTRR1 ... 30

N
NA# Signal .. 69
Name String ... 77
NMI ... 9
NOL2 Bit ... 34
NW Bit .. 9

O
Operating Frequency ... 6
Out-of-Order Write Cycles .. 25
P

Page Flush .. 36
Page Flush/Invalidate Register (PFIR) 36
models [8:F:8], 9, and D 36
PBF Field ... 46
Performance
EWBEC field settings (table) 26
L2 cache disable setting 39
merging multiple write cycles 30
tuning ... 11, 57
write allocation 19
write ordering 25–26
PF Bit ... 36
Physical
address generation 31
base address 31
Pin Bus Frequency Divider Field 46
Pipelining
support .. 69
write allocation methods 69
POPFD Instruction 59
POST Routine 56
VIDC bit setting 56
Processor
BIOS boot strings 6, 11, 66
bus frequency 34
determining signature 62
displaying name 6, 11, 66
extended functions 75
identifying supported features 63
identifying vendor 60
models ... 2
name string 77
recognition 6, 57
signature (extended function) 66, 75
signature (standard function) 72
signatures for embedded AMD processors (table) 62
speed detection 6
standard functions 72
state after INIT 9
state after RESET (table) 8–9
steppings ... 2
Processor State Observability Register (PSOR)
model D low-power 46
models [8:F:8], 9, and standard-power D 34
Processor-to-Bus Clock Ratios
model D low-power (table) 47
model D standard-power (table) 35
models [8:F:8] and 9 (table) 35
PUSHFD Instruction 58

R

RDMSR Instruction 14, 16
L2 tag or data selection 42
RDTSCK Instruction 16
Read-Only Memory 70
Real-Time Clock (RTC) 6
Refresh .. 69
Registers
enhanced power management (EPMR) 54
extended feature enable (EFER) 18, 24, 39
level-2 cache array access (L2AAR) 40, 48
machine-check address (MCAR) 46
machine-check type (MCTR) 16
page flush/invalidate (PFIR) 36
processor state observability (PSOR) 34, 40, 46
states after RESET and INIT 8
SYSCALL/SYSRET target address (STAR) 22
SYSCALL/SYSRET Target Address Register (STAR)
models [8:F:8], 9, and D 22
SYSENTER Instruction 61
SYSEXIT Instruction 61
SYSETInstruction 18, 22
System Management Mode (SMM) 68
Streaming SIMD Extensions (SSE) 65
SYSCALL Instruction 18, 22
SYSCALL/SYSRET Target Address Register (STAR)
models [8:F:8], 9, and D 22
SYSENTER Instruction 61
SYSEXIT Instruction 61
SYSETInstruction 18, 22
System Management Mode (SMM) 68
Streaming SIMD Extensions (SSE) 65

T

Test Register 12 (TR12) 16
Time Stamp Counter (TSC) 16
TLB .. 78

U

UC/UC Cacheability Control Register (UWCCR)
model [8:F:8], 9, and D 30
valid masks and range sizes (table) 32
Uncacheable (UC) Memory 30

V

Vendor Identification String 72
VID Field ... 46
VID[4:0] Outputs 46
VIDC Bit .. 56
VIDO Field 56
Voltage ID Control Bit 56
Voltage ID Output Field 56

W

WAE15M Bit .. 21
WAELIM Field 20, 69
WHINVD Instruction 19
WC/UC Memory Type for UWCCR Register (table) 31
WCDE Bit ... 69
Write Allocation
methods ... 20
WAELIM .. 69
WCDE ... 69
Write Cycles
 out-of-order ... 25
Write Handling Control Register (WHCR)
 models 7 and 8[7:0] 19
 models 8[F:8], 9, and D 27
Write Merge Buffer 24–25
Write-Combining (WC) Memory 30–31
WRMSR Instruction 14, 16
 L2 tag or data selection 42
 page flush/invalid register (PFIR) 36