Skip Ribbon Commands
Skip to main content

Project FreeSync will utilize DisplayPort Adaptive-Sync protocols to enable dynamic refresh rates for video playback, gaming and power-saving scenarios. 

All AMD Radeon™ graphics cards in the AMD Radeon™ HD 7000, HD 8000, R7 or R9 Series will support Project FreeSync for video playback and power-saving purposes. The AMD Radeon™ R9 295X2, 290X, R9 290, R9 285, R7 260X and R7 260 GPUs additionally feature updated display controllers that will support dynamic refresh rates during gaming.

AMD APUs codenamed "Kaveri," "Kabini," "Temash," "Beema" and "Mullins" also feature the necessary hardware capabilities to enable dynamic refresh rates for video playback, gaming and power-saving purposes. All products must be connected to a display that supports DisplayPort Adaptive-Sync.

It is our current understanding that the software architecture of select games may not be compatible with dynamic refresh rate technology like Project FreeSync. In these instances, users will be able to toggle the activation of FreeSync in the AMD Catalyst™​ driver.
2.02199/8/2014 11:25 AM

The basic benefit of Project FreeSync is the dynamic refresh rate ("DRR"), which allows the graphics card to synchronize the refresh rate of a monitor 1:1 with the framerate of an AMD Radeon™ GPU. With DRR, gamers can  experience the full range of framerates produced by a graphics card without clamping to some divisor of the monitor’s refresh rate (e.g. 30 or 45 FPS). Because Project FreeSync can eliminate the large jumps in framerates induced by traditional v-sync, the result in noticeably smoother gameplay.

Gamers especially sensitive to input latency — a delay between mouse movement and cursor movement — will also see a distinct increase in responsiveness.

Finally, running a game at full framerates (e.g. without v-sync) would typically introduce nasty horizontal tearing, but Project FreeSync also eliminates tearing as a rule. Project FreeSync is a "best of all worlds" solution from the perspective of smoothness, image quality and responsiveness.

2.02238/22/2014 11:47 AM

Project FreeSync is an AMD effort to leverage industry standards, like DisplayPort Adaptive-Sync, to deliver dynamic refresh rates. Dynamic refresh rates synchronize the refresh rate of a compatible monitor to the framerate of a user’s AMD Radeon™ graphics to maximally reduce input latency and reduce or fully eliminate stuttering/juddering/tearing during gaming and video playback.​
3.02128/22/2014 11:46 AM

With Project FreeSync, an AMD Radeon™ graphics card directly controls display timings. Direct control eliminates the need for polling or waiting on the display, which could impact latency and performance. ​

Upon connecting a FreeSync-enabled monitor to a compatible AMD Radeon™ graphics card, the minimum and maximum times between the display of new frames (the vblank period) is exposed to the GPU via DisplayPort Adaptive-Sync. Because the minimum/maximum vblank period is known to the graphics card, successive frames will intelligently be sent within those boundaries. Predictive or speculative timing is not required under this model, and the GPU will adjust the display's refresh rate to match the current frame rate.

If an upcoming frame is delivered outside of the monitor's supported vblank period, that frame will be immediately presented on-screen when available to ensure the fastest possible screen update.

8.02268/22/2014 11:45 AM

AMD has undertaken efforts to encourage broad adoption for Project "FreeSync", including:

  • Royalty-free licensing for monitor vendors;
  • Open and standardized monitor requirements (e.g. no non-standard display controllers or ASICs);
  • Industry-standard implementation via the DisplayPort Adaptive-Sync amendment to the DisplayPort 1.2a specification; and
  • interoperability with existing monitor technologies.

AMD is presently advocating these benefits to display vendors and working with their respective design teams to expand the capabilities of high-performance/gaming-oriented monitor lineups to include Project FreeSync. While AMD cannot possibly guarantee that "every monitor" will adopt Project FreeSync in time, we do believe that this approach is best to achieve wide industry support.

Additionally, it must be established that all dynamic refresh rate technologies require robust, high-performance LCD panels capable of utilizing a wide range of refresh rates without demonstrating visual artifacts. Such LCD panels naturally cost more to manufacture and validate than less capable panels, which may render dynamic refresh rate technologies economically unviable for especially cost-conscious monitors. Economies of scale and the maturation of dynamic refresh rate technologies could help alleviate this concern and further promote adoption in the future.

Learn more: What is the difference between FreeSync and DisplayPort Adaptive-Sync ?

2.02258/7/2014 2:16 PM

​An AMD Radeon™ graphics card compatible with Project FreeSync uses the DisplayPort™ Adaptive-Sync specification to automatically determine the minimum and maximum refresh rates supported by a dynamic refresh-ready system. Using this approach, no communication must occur to negotiate the time a current frame remains on-screen, or to determine that is safe to send a new frame to the monitor.

By eliminating the need for ongoing communication with pre-negotiated screen update rates, Project FreeSync can execute highly dynamic changes in frame presentation intervals without incurring communications overhead or latency penalties.

1.02247/29/2014 3:38 PM

To take advantage of the benefits of Project FreeSync, users will require: a monitor compatible with DisplayPort Adaptive-Sync, a compatible AMD Radeon™​ GPU with a DisplayPort connection, and a compatible AMD Catalyst™ graphics driver. AMD plans to release a compatible graphics driver to coincide with the introduction of the first DisplayPort Adaptive-Sync monitors.
2.02167/29/2014 3:37 PM

​AMD Radeon™​ graphics cards will support a wide variety of dynamic refresh ranges with Project FreeSync. Using DisplayPort Adaptive-Sync, the graphics card can detect and set an appropriate maximum and minimum refresh rate based on the capabilities reported by the display. Potential ranges include 36-240Hz, 21-144Hz, 17-120Hz and 9-60Hz.

1.02227/29/2014 12:34 PM

Project FreeSync’s ability to synchronize the refresh rate of a display to the framerate of a graphics card can eliminate visual artifacts that many gamers are especially sensitive to: screen tearing, input lag, and stuttering. Project FreeSync aims to accomplish this through an open ecosystem that does not require licensing fees from participants, which encourages broad adoption and low end-user costs.

1.02217/29/2014 12:33 PM

​There are three key advantages Project FreeSync holds over G-Sync: no licensing fees for adoption, no expensive or proprietary hardware modules, and no communication overhead. 

The last benefit is essential to gamers, as Project FreeSync does not need to poll or wait on the display in order to determine when it’s safe to send the next frame to the monitor. 

Project FreeSync uses industry-standard DisplayPort Adaptive-Sync protocols to pre-negotiate supported min/max refresh rates during plug’n’play, which means frame presentation to the user will never be delayed or impaired by time-consuming two-way handshakes.

1.02207/29/2014 12:33 PM
​DisplayPort Adaptive-Sync is an ingredient DisplayPort feature that enables real-time adjustment of monitor refresh rates required by technologies like Project FreeSync. Project FreeSync is a unique AMD hardware/software solution that utilizes DisplayPort Adaptive-Sync protocols to enable user-facing benefits: smooth, tearing-free and low-latency gameplay and video.​ Users are encouraged to read this interview​ to learn more.
2.02147/29/2014 12:29 PM

​AMD has undertaken every necessary effort to enable Project FreeSync in the display ecosystem. Monitor vendors are now integrating the DisplayPort Adaptive-Sync specification and productizing compatible displays. AMD is working closely with these vendors to bring products to market, and we expect compatible monitors in the 4Q14-1Q15 timeframe.

1.02177/29/2014 12:25 PM

​The DisplayPort Adaptive-Sync specification was ported from the Embedded DisplayPort specification through a proposal to the VESA group by AMD. DisplayPort Adaptive-Sync is an ingredient feature of a DisplayPort link and an industry standard that enables technologies like Project FreeSync.​

1.02157/29/2014 12:23 PM
​DisplayPort Adaptive-Sync is a new addition to the DisplayPort 1.2a specification, ported from the embedded DisplayPort v1.0 specification. DisplayPort Adaptive-Sync provides an industry-standard mechanism that enables real-time adjustment of a monitor’s refresh rate of a display over a DisplayPort link.​
1.02137/29/2014 12:22 PM
Mantle Frequently Asked QuestionsFAQ

Multi-GPU is handled by the developers in the Mantle ecosystem. This is a vital change to today's graphics landscape, as developers are now empowered with total control to create a multi-GPU subsystem that matches the particulars of their game engine. 

This fine-grained control introduces several benefits and unique uses cases, including:​

  • The ability to create the ideal alternate frame rendering (AFR) solution on every title, with performance results similar to an ideal AFR profile in the AMD Catalyst™ graphics driver.
  • The ability to create an multi-GPU subsystem that harnesses both GPUs to build each frame, eliminating the AFR latency penalty.
  • Improvements in stereo 3D, such as GPU_A working on the left stereo pair, while GPU_B works on the right—a setup not possible in DirectX®
  • Or the ability to asynchronously issue work, e.g. GPU_B working on global illumination, while GPU_A renders the scene and fetches results from GPU_B.
4.02117/29/2014 10:51 AM
Mantle Frequently Asked QuestionsFAQ

​Yes, AMD has published many blogs​ about Mantle that explore the API in greater detail.

2.02107/29/2014 10:26 AM
Mantle Frequently Asked QuestionsFAQ

Yes, AMD Catalyst™ 14.4 WHQL (or later) must be installed on your system to take advantage of Mantle-enabled software.​ This graphics driver enables Mantle for both notebook and desktop systems configured with AMD Radeon™​​ GPUs featuring the Graphics Core Next architecture.

4.01917/29/2014 10:23 AM
Mantle Frequently Asked QuestionsFAQ

DirectX® 12 is Microsoft’s own creation, though its development has been steered by input from many different technology partners including AMD.  We have welcomed the same input on Mantle by sharing the full specification with Microsoft since the early days of our API. As the industry moves to embrace the principles of “closer-to-the-metal” API design, it is evident that our pioneering work with this concept has been highly influential.

2.02087/29/2014 10:19 AM
Mantle Frequently Asked QuestionsFAQ

Mantle is currently the only low-overhead graphics API supported by multiple applications, major game engines, and publicly available graphics drivers. Mantle is ready and waiting to solve present-day problems and deliver proven results on millions of PCs. Additionally, the “lower level” nature of Mantle makes it an ideal way to immediately begin learning the principles of “closer to the metal” API development that are emergent in our industry.

1.02097/29/2014 10:11 AM
Mantle Frequently Asked QuestionsFAQ

There is no direct relationship, but we support and celebrate a direction for game development that is aligned with AMD’s vision of lower-level, "closer to the metal" graphics APIs for PC gaming. While industry experts expect this to take some time, developers can immediately leverage efficient API design using Mantle.

1.02077/29/2014 10:10 AM
AMD Graphics Software and Drivers FAQFAQ
​AMD has published a knowledgebase article that provides the basic steps to guide you through selecting a compatible driver, installing the driver, and troubleshooting potential issues that may occur.  

To review the KB article, refer to: GPU-603​
3.02036/25/2014 2:40 PM
Multimonitor FAQFAQ

Yes, for information on Eyefinity group configuration please watch the video below:



If you prefer, the guide is also published in a knowledgebase article: Setting up AMD Eyefinity Technology Display Groups .

3.0696/17/2014 1:40 PM
Multimonitor FAQFAQ

AMD Graphic Processing Units (GPU) have the capability of supporting more than one display at the same time however, this is dependent on the available connections on the graphics card. 

Multiple monitor set-ups are configured through the AMD Catalyst™ Control Center. The three multi-monitor modes are:

Duplicate (Presentation) Mode

In this mode, the same desktop is shown on multiple displays simultaneously. The displays will run at the same resolution and refresh rate.

Duplicate mode is useful for presentations where one display is in front of the presenter and the other display is in front of the audience.

Note: Duplicate mode does not duplicate displays that are on different graphics cards. Duplicate mode only works on displays that are connected to the same graphics cards.

Extended Mode

In the extended mode, each monitor is configured with separate settings (resolution, refresh rates, color quality). The Windows® desktop is extended between the two or more monitors (except for the task bar).

In extended mode, the displays can be rotated between portrait and landscape view to maximize working desktop space.

For instructions on configuring multiple displays using the AMD Catalyst Control Center, please watch the video below:


Eyefinity Mode

In the Eyefinity mode, the Windows desktop is stretched between two or more displays and is treated as one large desktop. The final resolution is the horizontal and vertical sum of the individual monitors.

For example: 4 displays arranged in a 2x2 configuration with each display running at 1280x1024 would create a desktop area of 2560x 2048.

Note: Eyefinity group mode is not available under the Microsoft® Windows XP operating system.​

For more information on Eyefinity configuration please watch the video below:


If you prefer, the guide is also published in a knowledgebase article: Setting up AMD Eyefinity Technology Display Groups​​

3.0686/17/2014 1:34 PM
Multimonitor FAQFAQ


​In this video we describe the differences between VGA, DVI, HDMI and DisplayPort monitor outputs found on AMD Radeon™ Series graphics cards.  The video will demonstrate the connection combinations possible so that three of more displays can be enabled at the same time.

If you prefer, AMD has published this content in a knowledgebase article. Please see:

If you need to use adapters to connect one or more of your displays, please choose from the list of recommended adapters below:

To explore the different display layouts that are possible with AMD's Eyefinity technology, please use the tool below:

7.01546/17/2014 1:30 PM
Multimonitor FAQFAQ

As we mentioned in the last question, every family of GPUs supports a different maximum number of displays. This support is inherent to the AMD graphics chip at the heart of your graphics card.

Before looking through the table, though, keep in mind that the maximum number of supported displays can differ from the number of display outputs on the card. Certain adapters, hubs, or a non-reference graphics card may be required to take full advantage of the capabilities we build into our chips.

AMD Radeon™ graphics solutions

AMD​​ FirePro™ Professional Graphics

Up ​to 6 displays
  • AMD Radeon™ ​HD 7900 Series
  • AMD Radeon™ HD 7800 Series
  • AMD Radeon™ HD 7700 Series
  • AMD Radeon™ HD 6900 Series
  • AMD Radeon™ HD 6900M Series
  • AMD Radeon™ HD 6800 Series
  • AMD Radeon™ HD 6800M Series
  • AMD Radeon™ HD 6700M Series
  • AMD Radeon™ HD 6600M Series
  • AMD Radeon™ HD 6500M Series
  • ATI Radeon™ HD 5800 Series
  • ​ATI FirePro™ V9800


Up to 5 displays
  • ​AMD Radeon™ HD 6700 Series
  • ATI Radeon™ HD 5700 Series
  • ​n/a
Up to 4 displays
  • ​AMD Radeon™ HD 6600 Series
  • AMD Radeon™ HD 6500 Series
  • AMD Radeon™ HD 6400M Series
  • AMD Radeon™ HD 6300M Series
  • ​ATI FirePro™ V8800
  • AMD FirePro™ V7900
  • ATI FirePro™ 2460 Multi-View
Up to 3 displays
  • ​AMD Radeon™ HD 6400 Series
  • ATI Radeon™ HD 5600 Series
  • ATI Radeon™ HD 5500 Series
  • ATI Radeon™ HD 5400 Series
  • ​ATI FirePro™ V7800
  • AMD FirePro™ V5900
  • ATI FirePro™ V5800
  • ATI FirePro™ V4800
14.01516/12/2014 4:23 PM
Multimonitor FAQFAQ

As previously indicated, AMD graphics solutions equipped with DisplayPort 1.2 outputs can actually run multiple monitors from a single port. 


This feature is called Multi-Stream Transport, or MST, and it allows a single cable from the graphics card to carry the signal for multiple monitors. Taking advantage of this feature requires one of two things:

  • A DisplayPort 1.2 MST-capable hub, which connects to ​the graphics card's DisplayPort output on one end, and provides multiple monitor connections on the other.
  • Or DisplayPort 1.2 MST-capable monitors, which allow a user to daisy chain monitors together, with the final monitor connecting to the graphics card.
Using DisplayPort 1.2 MST, a user can connect up to six displays to a single port on many AMD Radeon™ graphics and AMD FirePro™ professional graphics products. For more information on DisplayPort 1.2, and multi-stream transport, please consider reading our DisplayPort whitepaper (PDF).


Using an MST-capable hub for multiple displays

We have recently published KB article: "Driving Multiple Displays From a Single DisplayPort™ Output with AMD Radeon Graphics Products​" that will walk you through the process of configuring multiple displays. Please visit that page for a list of supporting​ products, as well as general configuration advice.

Please note that DisplayPort 1.2 MST hubs​ are also beginning to reach the market through AMD technology partners like Club3D and Bizlink. 


DisplayPort 1.2 MST hubs allow for a single cable to connect multiple displays to a single DisplayPort output on an AMD Radeon™ graphics card.

Using MST-capable monitors for multiple displays

Recently, manufacturers have been releasing monitors that can connect to one another in a "daisychain" configuration that ultimately links back to the graphics card. This dasychaining permits each monitor to supply the display signal for the next monitor in the chain, with several displays connecting to one display output on the GPU. Monitors that feature this technology include the Dell U2413U2713HU2913WM and U3014.

To configure displays such as these, please visit our KB article: "Using a Dell Monitor supporting DisplayPort 1.2 Multi-Stream Transport with AMD Radeon™ Graphics Products​​" that outlines specific configuration steps, as well as system requirements.


Using MST-capable displays, such as these Dell U2413 panels, allows for several daisychained monitors to be connected to the graphics card with a single DisplayPort cable.​

10.01536/3/2014 7:04 PM
Multimonitor FAQFAQ

​It's partially true. AMD Eyefinity technology is a brand name that actually describes three distinct functions:

  1. Hardware support for three or more monitors attached to a single graphics card.
  2. Software support to independently configure and run each of those displays.
  3. And software support to combine the resolutions of all of those displays into one big resolution.

At a basic level, many users like AMD Eyefinity technology for the first reason: connecting more than two displays is no longer a challenge as it has been in the past. And whether you run Linux, Microsoft® Windows® or Mac OS®, each operating system works seamlessly with AMD's hardware/software to connect and configure multiple displays.

Assuming for a moment that you never perform any additional configuration once the monitors are connected, these displays are running in what's called "extended mode." Monitors do not have to be the same size or resolution in this mode, and you should feel free to rearrange your games and applications across the extended displays as you see fit.

The primary drawback to extended displays is that a game or video cannot readily be maximized to take advantage of all the displays at the same time, which is where AMD Eyefinity technology's SLS mode steps in.

Single Large Surface (SLS) mode is activated when you create an AMD Eyefinity technology display group in the AMD Catalyst™ Control Center. SLS mode combines the resolutions of all the connected displays, and then essentially "tricks" the operating system into believing that there is one display with that large combined resolution. 


Dragon Age II in AMD Eyefinity technology 5x1 portrait mode. Spanning the game to all five monitors would not be possible without SLS.

While SLS mode does not require all monitors to be of the same resolution, SLS mode will force each monitor to match the smallest resolution on any of the displays you're combining. For example, a 1680x1050 monitor paired with two 1920x1200 monitors will force the 1920x1200 monitors to 1680x1050 before they're combined for a final SLS resolution of 5040x1050. For this reason, we do strongly encourage all monitors to have, at the very least, the same resolution. Provided you meet this technical requirement, we think you'll find the effect of SLS to be absolutely breathtaking.

Seeing is believing, though, and this interactive demo shows just how much you're missing in the games we've validated if you're playing on just one monitor. Even many of the games we haven't validated also look great with AMD Eyefinity technology! 

The same demo also shows how users can be more productive in a professional environment with an AMD Eyefinity technology on an AMD FirePro™ professional graphics solution.

But AMD Eyefinity technology isn't just about games. The prestigious market research firm, IDC, has shown (PDF) that workers are more productive when equipped with a multi-display solution like AMD Eyefinity technology.  Even with SLS mode enabled, each display can be treated like an independent monitor with the AMD HydraVision™ software.

So, whether you choose SLS or extended displays, the versatility of AMD Eyefinity technology virtually ensures that there will be a solution to help you work smarter and game harder.

3.01576/3/2014 1:00 PM
Multimonitor FAQFAQ

​Not at all. Products like the Asus HD 7970 DirectCU II or ATI FirePro™ V9800 support up to 6 displays without any need for DisplayPort 1.2-compatible hubs or monitors. These manufacturers have designed unique solutions with additional DisplayPort outputs, which obviate the need for such equipment.


The ATI FirePro™ V9800 GPU has six mini-DisplayPort outputs, supporting up to six simultaneous displays.

3.01566/3/2014 12:58 PM
Multimonitor FAQFAQ

Display outputs are the ports on the back of your graphics card, which can accept a connection with a monitor. The following pictures illustrate the outputs you might find on an AMD graphics product:

Digital Visual Interface (DVI) DVI
DisplayPort (DP) DP
Mini DisplayPort (mDP) mDP
High-Definition Multimedia Interface (HDMI) HDMI
Video Graphics Array (VGA) VGA

For a more comprehensive list of Display connectors have a look at our Common Male Connector and Female Connection Types​ article

4.01556/3/2014 12:54 PM
Mantle Frequently Asked QuestionsFAQ

​A common bottleneck in graphics work is poor parallelization across multi-core CPUs. Some cores may go completely unutilized, and that represents an opportunity to reclaim lost performance by approaching graphics work in a way that those cores become used. More examples can be found in the official Mantle API whitepaper.​​​

1.02025/7/2014 1:22 PM
1 - 30Next